DOI:10.16450/j.cnki.issn.1004-6801.2022.04.019

基于VIC-3D技术的自复位梁柱节点抗震性能试验^{*}

裴 强, 吴 聪, 胡顺彩 (大连大学建筑工程学院 大连,116622)

摘要 为降低强震对传统钢筋混凝土框架结构梁柱节点的破坏水平,提升梁柱节点在震后的可修复性,设计了一种 内置超弹性形状记忆合金(shape memory alloy,简称SMA)筋的新型自复位梁柱节点。基于对不同配筋构造形式 和SMA筋不同配筋率等因素的考虑,设计制作了4个1/5缩尺比例梁柱节点并进行了拟静力试验。通过非接触全 场应变测量系统(video image correlate-3d,简称VIC-3D)对低周往复加载作用下各节点塑性铰区的整体位移和应 变进行了实时测摄,获得了相应的竖向位移和主应变全过程云图。对起裂阶段、裂缝发展阶段和自复位阶段3个阶 段进行研究,对比分析了各节点的破坏过程以及耗能能力、位移延性、刚度退化和自复位等性能。试验结果表明:内 置超弹性SMA筋可有效提升节点的滞回耗能和自复位性能,延缓塑性核心区混凝土的开裂,改善开裂后的损坏程 度,提升节点的经济可修复性;一定范围内,增大SMA筋配筋率可有效延缓节点的刚度退化速度,但对节点的极限 承载力和自复位性能的提升影响不大。

关键词 自复位;形状记忆合金;梁柱节点;拟静力试验;非接触全场应变测量系统 中图分类号 TU375

引 言

基于现行规范设计下的抗震结构已基本满足 "大震不倒"的设防要求,但大震过后结构的整体变 形一般较大,特别是梁柱节点塑性铰区域,往往因裂 缝等永久损伤变形过大而不具备较经济的可修复 性。在此背景下,随着地震可恢复功能概念[1]的深 入推广,国内外学者对自复位结构开展了广泛的设 计与研究^[25]。毛晨曦等^[6]在钢筋混凝土梁柱节点中 引入预应力钢绞线并外置了耗能角钢,形成预应力 自复位耗能梁柱节点,试验表明,初始预应力的合理 设置是实现节点自复位的关键。刘哲峰等[7]将节点 转动耗能区从节点核心区外移,提出了一种悬臂摩 擦式自复位混凝土梁柱节点,该节点耗能及自复位 效果良好。Mahmoud 等^[8]在混凝土梁柱连接塑性 区将钢筋和混凝土分别替换为形状记忆合金筋和高 延性水泥基复合材料(engineered cementitious composite, 简称 ECC), 试验结果表明, 该新型节点在强 震下的永久变形及损伤得到了有效控制。

目前,相关的自复位结构试验对于位移及应变 的测量大多采用的是接触式位移传感器和应变片等 传统测量方式^[9-10]。但是,通过应变片所测得的只是 一个点或一个方向的应变,在空间上的数据呈现是 不连续的,所测数据较为单一,且往往因试件破坏开 裂或变形过大而导致数据缺失或无法测量。同时, 考虑到拟静力试验加卸载过程中试件存在轻微振 动,接触式位移计的准确度难以保证,而采用基于数 字图像相关算法的高精度 VIC-3D 测量系统进行位 移及应变的测量,不仅克服了传统测量方式的缺陷, 而且获得的试件三维整体的位移与应变云图是基于 真实的材料本构,其结果对后续相关的数值模拟验 算具有一定的参考价值。

目前,关于超弹性SMA材料自复位混凝土梁 柱节点的拟静力试验研究相对较少^[11-12],鉴于此,笔 者提出了一种新型内置超弹性SMA筋自复位梁柱 节点,并通过VIC-3D技术对新型自复位节点的拟 静力试验进行全程测摄研究,用以分析不同配筋构 造形式和不同SMA筋配筋率等因素对节点抗震性 能的影响,进而指导新型自复位节点的设计改良与 应用。

1 VIC-3D 技术原理简介

非接触式全场测量系统采用的是数字图像相关

^{*} 国家自然科学基金资助项目(51878108) 收稿日期:2021-05-17;修回日期:2021-08-26

757

技术(digital image correlation,简称DIC)。首先,在 待测区域随机分布散斑点,为准确识别三维位置点 位,需根据视场区域大小选择相应尺寸的自动标定 板并在测量前进行标定;其次,通过相机分别拍摄记 录下待测区域变形前后的散斑图像,利用散斑灰度 值进行搜索匹配与计算,如图1所示,求解出散斑图 像间的相对位移^[14];最后,通过相应的几何转换计算 式计算出所测区域的表面轮廓变化及三维变形场。 VIC-3D可测量被测物表面全场三维位移、应变及 相应的速率等,且对环境要求较低,原则上无须考虑 室内或室外,只要能够摄得待测区域清晰图像即可 进行测量。目前,已有大量研究证明了数字图像相 关技术及采用基于该技术的VIC-3D进行各类试验 测摄的准确性和可行性^[13-18]。

2 试验概况

2.1 试验模型

选取某型核电站常规岛主厂房框架边节点作为研究对象,设计制作了4个缩尺比为1/5的梁柱节点,包括2个新型自复位梁柱节点PSJD₁与PSJD₂(普通纵筋加内置不同直径SMA筋的混合节点)和2个对比节点(普通钢筋混凝土梁柱节点PJD,SMA筋增强梁柱节点SJD)。各试件的几何尺寸相同且

均按照我国现行混凝土设计规范进行制作。为降低 节点破坏开裂时给锚固连接端带来的不利影响,将 2块钢板分别置于距离梁和柱外侧边缘50mm处, 试件尺寸配筋及具体参数如图2和表1所示,新型 节点的内置SMA筋构造示意如图3所示。

mm)

2.2 材料性能

本试验所用的 Ni-Ti形状记忆合金筋材料成分 占比为 55% Ni 和 45% Ti, 材性试验结果如表 2 所 示。梁柱纵向钢筋选用的型号为 HRB400级, 箍筋 选用 HPB300级, 所有钢筋的力学性能参数如表 3 所示。混凝土立方体试块抗压强度实测结果如表 4 所示。

表1 试件基本参数 Tab.1 Basic parameters of specimens

试件编号 -	柱配筋情况		梁配筋情况			
	纵筋 箍筋		纵筋	SMA筋配筋率/%	* 钿压比	诋短日的
PJD	4 Φ 22	\$	4 \$ 10	0	0.25	对比试验
SJD	4 Φ 22	\$	4根直径为10mm SMA筋	0.800	0.25	对比试验
PSJD_1	4 Φ 22	\$	4@10+4根直径为8mmSMA筋	0.513	0.25	模型试验
PSJD_2	4Φ 22	\$	4 章 10+4根直径为10mmSMA筋	0.800	0.25	模型试验

图 3 内置 SMA 筋-钢端板三维构造示意图 Fig.3 3D structural diagram of steel end plate with built-in SMA reinforcement

2.3 加载装置与加载准则

为贴近节点的实际受力状态,试件制作过程中 在柱的下端套装了钢盒,并在钢盒上焊接了球形钢 铰,柱上端则采用加载千斤顶自带的球铰。考虑了 梁柱自重的影响,采用柱竖向梁水平向的方式进行 试件的安装,通过脚手架与反力墙相连实现对试件 横向的支撑。试验加载装置示意如图4所示。

节点试件的低周往复加载试验采用全过程位移 控制的方式,如图5所示。在试件屈服前,位移分级 加载的增量为1mm,每级循环2次;试件屈服后,记 屈服位移为△,后以△的整数倍分级进行加载,每级 循环2次,当荷载下降至极限荷载的85%或构件破 坏时结束加载。

Fig.4 Test setup

2.4 VIC-3D系统准备工作

在试验开始前,首先用白色涂料在试件的梁柱 连接塑性铰区喷涂,清理出梁部长为420 mm、柱部 长为680 mm的T型待测区域,后用黑色油漆笔在 喷涂干燥后的待测区域表面随机布置散斑,布置过 程中控制散斑的直径不小于2 mm,以确保相机更易 清晰地捕捉到散斑。架设相机到位并进行调焦,建 立水平方向为*x*轴和竖直方向为*y*轴的坐标系;选

表 2 Ni-Ti 合金材料性能 Tab.2 Material properties of Ni-Ti alloy

密度/(kg•m ⁻³)	弹性模	量/GPa 抗	拉强度/MPa	屈服强度/MPa	恢复应变/%			
7 800	65	.4	600	390	4.5			
表 3 钢筋性能指标 Tab.3 The performance of reinforcement								
钢筋型号	钢筋直径/mm	屈服强度/MPa	极限强度/MPa	弹性模量/10⁵MPa	伸长率/%			
LIDD200	6	310.67	460.56	1.90	19.12			
HPB300	8	323.98	462.73	1.92	19.38			
	10	448.56	601.09	2.03	19.96			
HKB400	22	438.64	573.86	1.98	20.60			

表4 混凝土试块实测结果

Tab.4 Concrete test block measurement results

空 测语日	第1组			第2组			目幼店	
	1	2	3	4	5	6	取珍怚	
破坏荷载/kN	543.13(舍)	436.56	455.34	485.01	411.73	470.97	—	
平均值/kN		445.95	—	—	455.90	—	450.93	
抗压强度/kN		42.37	—	—	43.31	—	42.84	

择尺寸为20mm的校正板,并对相机进行参数校准 计算以获得相机内外参数,从而获得相机采集试件 的参数;FLEX CAPTURE编辑时间为2s;试验中 共采集到3000张散斑图像,以初始状态为基准图 像,在参考图像中间位置选择分析区域的水平距离 为200mm。VIC-3D测摄现场如图6所示。

图 6 VIC-3D测摄现场照片 Fig.6 VIC-3D photographing scene

3 试验结果与云图分析

新型自复位节点旨在提升普通梁柱节点的耗能 及自复位等抗震性能,节点损坏程度的改善是节点 抗震性能及经济可修复性提升的重要直观表现。节 点的低周往复加载试验全过程按照损坏程度大致可 以分为3个阶段:起裂阶段;裂缝发展阶段;自复位 阶段。

位移变化云图可以直观地反映试件整体在加载 过程中的位移变化,是节点延性和耗能分析的重要 依据。与常规的节点类似,测量节点的竖向位移可 以直接地反映梁端在加载方向上的位移变化。根据 $\sigma = E\varepsilon$ 可知,主应变云图可间接地反映相应位置的 应力大小,从而进一步对比研究各节点的破坏演变 过程。因此,笔者选取3个阶段各节点的竖向位移 云图和部分主应变云图来对各节点的破坏过程以及 耗能能力、位移延性、刚度退化及自复位等性能进行 对比分析。

3.1 起裂阶段

本次试验4组试件选择的轴压比均为0.25,在 开始正式循环加载前,对节点试件进行目标值为 1 kN的预加载以检查试验各设备是否就位。正式 加载开始后,得到4个试件起裂时的竖向位移云图 如图7所示,裂缝发生位置在云图上以空出的形式 呈现。

对照图7各节点竖向位移起裂时的云图图例可 知,在梁根部出现第1道较明显裂缝时各节点梁顶 端(图7中虚线框所示位置)位移值大小约如下: PJD 为 1.2 mm; SJD 为 1.0 mm; PSJD, 为 2.2 mm; PSJD,为2.3 mm。根据加载制度,开裂时的位移值 更大,表明开裂前的加载往复次数更多,一定程度上 说明了新型节点 PSJD1和 PSJD2相对于普通节点滞 回耗能得到了较大提升。另一方面,从位移大小可 以看出两新型节点相较于普通节点,其弹性阶段的 延性有了一定的提高,而对比试验的SJD节点相对 于普通节点PJD延性则略有下降。这是由于SMA 筋的弹性模量(65.4 GPa)远小于钢筋的弹性模量 (203 GPa),在配筋率相同的情况下,整体刚度更小 的SJD节点的弹性阶段延性相对于普通节点应更 强,但表面光滑的SMA筋与混凝土间的黏结锚固 力较低,使得SJD节点梁端根部混凝土所分担的拉 压应力相比于其他节点更大,而混凝土的受拉易裂 性导致了该节点过早出现了裂缝。内置了SMA筋

Fig.7 Vertical displacement cloud graphs at crack initiation of each joint

的 PSJD₁和 PSJD₂节点虽然整体初始刚度相对于普 通节点 PJD 略大,但 SMA 筋优异的滞回耗能性能 消耗了循环往复加载过程中的大量能量,使得新型 节点在更大变形时才出现裂缝。

3.2 裂缝发展阶段

随着加载的控制位移值不断增大,各节点先后进入塑性阶段,此阶段可测得各节点的荷载峰值。 考虑到荷载峰值时的裂缝发展较为成熟,具有一定的代表性,故本次试验选取4个节点达到荷载峰值时的竖向位移和主应变云图进行研究,见图8。

Fig.8 Vertical displacement cloud graphs at peak load of each joint

3.2.1 刚度退化速度分析

整理图7与图8测得的各节点起裂与达到荷载 峰值时的梁端位移值以及相应时刻液压伺服加载系 统实时记录的加载值,如表5所示。

表 5	各节	点起裂与	i达到i	岢载峰伯	直时	的荷载	位移值
Tab.5	Load	displace	ement	value	at	crack	initiation
	and p	eak load	lofea	ach ioi	nt		

	起裂	时	达到荷载峰值时		
节点	梁端位移/	荷载/	梁端位移/	荷载/	
	mm	kN	mm	kN	
PJD	1.2	17.23	23.1	45.32	
SJD	1.0	4.52	13.0	28.16	
PSJD_1	2.2	22.17	18.2	65.34	
PSJD_2	2.3	30.14	10.0	73.25	

从表5可以看出,新型节点开裂时的承载力相 较于普通节点获得了一定的提高,而过早开裂的 SJD节点开裂时的承载力相对于普通节点则有明显 下降。另一方面,新型节点 PSJD₁和 PSJD₂的极限 承载力相较于普通节点 PJD 有了较大提高的同时, 荷载峰值时的梁端位移均有了明显减小。这表明在 塑性屈服阶段,新型节点的刚度要明显大于普通节 点,而考虑到 SMA 筋弹性模量要远小于钢筋,故在 相同的钢筋配置下,内置了 SMA 筋的两新型节点 与普通节点的初始刚度基本相同。由此可知,内置 SMA 筋的新型节点的刚度退化速度总体上要小于 普通节点。

3.2.2 SMA配筋率的影响

依据表5进一步对比PSJD₁节点与PSJD₂节点。 一方面随着SMA筋配筋率的增大,刚度退化速度 有了明显的降低;另一方面,虽然极限承载力有了进 一步提高,但提升幅值不大。综上可得:内置SMA 筋可以有效提升节点的极限承载力并延缓刚度退化 速度;在适筋的情况下,一定范围内增大SMA筋的 配筋率对刚度退化速度影响较大,对极限承载力提 高影响不大。

3.2.3 破坏演变过程分析

从图 9 可以看出,对于 PJD, PSJD₁和 PSJD₂节 点而言,梁根部首先出现不同程度的应力集中后开 裂;随着加载位移值的进一步增大,梁上下表面薄弱 区开始出现应变集中并形成裂口,随着往复地加载, 从裂口发展出裂缝并不断延伸趋于贯穿,裂缝周围 存在应力释放区域导致应变出现局部增大(如箭头 所示);各节点处于塑性铰核心区的梁根部均逐渐形 成了不同宽度的贯穿梁根上下端的裂缝。当各节点 达到荷载峰值时,PJD节点在梁上下两端均出现了 贯穿裂缝,且已形成了 X 型交叉(图 9(a)虚线所围

区域);而在 SMA 筋的滞回耗能作用下, PSJD₁与 PSJD₂节点并未出现交叉裂缝,这也是新型节点刚 度退化慢于普通节点的原因。与此同时, PJD 节点 的梁根上下端均出现了有剥落趋势的拉压碎块, 而 两新型节点碎块更小甚至没有(实线方框所示)。由 此可见, 在一定范围内, 增大 SMA 筋配筋率可显著 改观节点达到荷载峰值时的开裂损坏程度。

SJD节点因配筋构造不同而有较大差异。梁部 只配置了 SMA 筋的 SJD 节点在往复加载作用下, 其梁柱连接根部过早出现的裂缝迅速发展,并沿着 几乎竖直的方向贯穿梁根的上下面(虚线方框所 示),同时梁与柱各自均未出现明显的开裂。这是由 于梁根部裂缝发展贯穿后,梁柱连接塑性铰位置的 混凝土大部分相对较早地退出了工作,此时的梁端 承载力主要由内置的 SMA 筋承担, 而拉压状态下 的表面光圆 SMA 筋与混凝土锚固力很低,主要靠 内置的钢板维持梁柱的连接整体性,此时梁与柱基 本形成相对各自独立的整体,这种工况下两部分混 凝土所受的外力有限。另一方面,进入塑性阶段的 SJD相比于其余节点,其塑性铰区混凝土退出工作 时间更早且面积更大,而SMA筋的弹性模量远远 低于普通钢筋,故SJD节点刚度退化速度更快且最 终刚度远低于其余节点,同时主要靠SMA筋承担 的极限承载力显然会比其余节点更低。总的来说, SJD的构造形式缺乏实用性。

3.3 自复位阶段

卸载后梁端的残余位移和节点裂缝的闭合程度 是此阶段衡量节点自复位性能的重要指标。选择相 同的幅值加载级别以确保可比性,考虑到PSJD₂节 点在加载过程中的梁端峰值位移为10 mm,故分别 取4个节点在梁端加载控制位移为10 mm级时加卸 载前后的竖向位移云图进行对比分析,见图10。

根据图10计算整理出4个节点的梁端残余位移 和变形可恢复率,如表6所示。

由表6可知,內置了SMA筋的新型节点PSJD₁ 和PSJD₂的变形可恢复率相对于普通节点有了大幅 提高,并且裂缝闭合相对更为完全。因此,此内置 SMA筋加固方式能够显著提高节点的自复位能力。 与此同时,PSJD₁与PSJD₂的残余位移相差很小,故 在小幅值荷载范围内,增大SMA筋配筋率对节点 自复位性能提升影响不大。

表 6 各节点梁端残余位移和变形可恢复率 Tab.6 Recovery rate of residual displacement and deformation at beam end of each joint

			0
节点	梁端控制位移/	梁端残余位移/	变形可恢复率/
编号	mm	mm	0⁄0
PJD	10	7.0	30
SJD	10	3.4	66
PSJD_1	10	2.7	73
$PSJD_2$	10	2.4	76

4 结 论

1)相对于在普通梁柱节点的基础上内置 SMA 筋,采用 SMA 筋完全代替普通钢筋的构造形式不 仅不利于梁柱节点抗震性能的提升,而且大幅降低 了节点的承载力。

2) 内置超弹性 SMA 筋可提升节点的滞回耗能

性能和延性,延缓节点塑性核心区混凝土的开裂。

3)内置超弹性SMA筋可有效提升节点的极限 承载力并延缓刚度退化速度。在适筋的情况下,增 大SMA筋的配筋率对刚度退化速度影响较大,对 极限承载力提高影响不大。

4)一定范围内,增大SMA筋配筋率可显著改 观节点达到荷载峰值时的开裂损坏程度,从而提升 节点损坏后的经济可修复性。

5) 在小幅值荷载范围内,内置了 SMA 筋的新 型节点卸载后的残余位移变小,自复位性能更强,增 大 SMA 筋配筋率对提升自复位性能影响不大。

参考文献

- [1] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
 ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience[J]. Engineering Mechanics, 2019, 36(6): 1-12.(in Chinese)
- [2] 谭平,周林丽,滕晓飞.自复位钢框架-半圆形波纹钢 板剪力墙滞回性能研究[J].建筑结构学报,2021, 42(3):185-192.

TAN Ping, ZHOU Linli, TENG Xiaofei. Hysteretic performance of self-centering steel frame with semicircular corrugated steel plate shear wall with edge stiffeners [J]. Journal of Building Structures, 2021, 42(3): 185-192. (in Chinese)

 [3] 毕仲君,胡志强,王琪,等.基于新型自复位摩擦耗能 支撑的 RC 框架结构地震残余变形控制[J].振动与冲 击,2020,39(15):95-102.

BI Zhongjun, HU Zhiqiang, WANG Qi, et al. Seismic residual deformation control for RC frame structures based on a novel self-centering friction damping brace [J]. Journal of Vibration and Shock, 2020, 39(15): 95-102. (in Chinese)

- [4] HASSANLI R. In-plane flexural response of selfcentering masonry walls (SMWs)[J]. Archives of Civil and Mechanical Engineering, 2021, 21(2): 87-103.
- [5] SHAMS A S, GHOBADI M S. Development of a high-performance hybrid self-centering building for seismic resilience [J]. Engineering Structures, 2021, 22(6): 55-68.
- [6] 毛晨曦,于樵,张昊宇,等.预应力自复位钢筋混凝土 柱及梁柱节点拟静力试验研究[J].自然灾害学报,

2017, 26(6): 1-12.

MAO Chenxi, YU Qiao, ZHANG Haoyu, et al. Pseudo-static tests of prestressed self-centering reinforced concrete column and beam-column joints[J]. Journal of Natural Disasters, 2017, 26(6): 1-12. (in Chinese)

 [7] 刘哲锋,郭佳,李鹏,等.悬臂摩擦式自复位RC框架
 节点的试验研究[J].地震工程与工程振动,2016, 36(6):102-110.

LIU Zhefeng, GUO Jia, LI Peng, et al. Experimental study on cantilever beam-column connections of selfcentering reinforced concrete frame with friction devices [J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(6): 102-110. (in Chinese)

- [8] MAHMOUD M A E, NEHDI M L. Exploring the synergy of ECCs and SMAs in creating resilient civil infrastructure [J]. Magazine of Concrete Research, 2018, 70(4): 172-188.
- [9] 吕西林,姜淳,卢煦.自复位钢筋混凝土框架结构及其 拟静力试验[J].工程科学与技术,2018,50(3):73-81.
 LÜ Xilin, JIANG Chun, LU Xu. Tri-axial self-centering reinforced concrete frame and its quasi-static test
 [J]. Advanced Engineering Sciences, 2018, 50(3): 73-81. (in Chinese)
- [10] 方有珍,马雪玉,耿苏齐,等.摩擦耗能部分自复位连接组合框架边节点抗震性能试验研究[J].工程科学与技术,2017,49(3):76-84.
 FANG Youzhen, MA Xueyu, GENG Suqi, et al. Experimental investigation on seismic performance of exterior joint with partial self-centering friction damped connection in composite frame [J]. Advanced Engineering Sciences, 2017, 49(3):76-84. (in Chinese)
- [11] 钱辉, 裴金召, 李宗翱, 等. 基于 SMA/ECC 的新型自复位框架节点抗震性能试验研究[J]. 土木工程学报, 2020, 53(11): 64-73,80.
 QIAN Hui, PEI Jinzhao, LI Zongao, et al. Experimental study on seismic performance of self-centering beamcolumn joints reinforced with superelastic SMA and ECC [J]. China Civil Engineering Journal, 2020, 53(11): 64-73,80. (in Chinese)
- [12] 肖正锋.形状记忆合金混凝土梁柱节点抗震性能研究 [D]. 沈阳:沈阳建筑大学, 2018.
- [13] 吴庆, 倪源, 孙林柱, 等. 基于 VIC-3D 技术的高强混 凝土单轴受压试验研究 [J]. 混凝土, 2014 (11): 19-23.

WU Qing, NI Yuan, SUN Linzhu, et al. Experimental study on high-strength concrete under uniaxial compres-

sion based on VIC-3D technology [J]. Concrete, 2014(11): 19-23. (in Chinese)

- [14] 王岚,胡江三,陈刚,等.基于 VIC-3D 技术的沥青混 合料界面力学特性实验研究[J].功能材料,2015, 46(3):3115-3120,3126.
 WANG Lan, HU Jiangsan, CHEN Gang, et al. Experimental investigation on interface mechanics of asphalt mixture based on technology of VIC-3D[J]. Journal of Functional Materials, 2015, 46(3): 3115-3120,3126. (in Chinese)
- [15] HARIS A, TAY T E, TAN V B C. Experimental analysis of composite bolted joints using digital image correlation [J]. Journal of Mechanical Engineering and Sciences (JMES), 2017, 11(1):72-85.
- [16] TAN Y Q, HOU M H, ZHANG L, et al. Studying the strain field distribution of asphalt mixture with the digital speckle correlation method [J]. Road Materials and Pavement Design, 2014, 15(1): 90-101.
- [17] ZHANG K, TAN Y Q, WU S G, et al. Analysis on

the indirect tension displacement and strain field of asphalt mixture based on ABAQUS and DICM [J]. Journal of Harbin Institute of Technology, 2011, 18(4): 63-66.

[18]魏康,员方,董志强,等.基于标志点的多相机数字图 像相关方法精度分析及土木工程中的应用[J].东南大 学学报(自然科学版),2021,51(2):219-226.
WEI Kang, YUAN Fang, DONG Zhiqiang, et al. Precision analysis and civil application of multi-camera digital image correlation method based on encoded targets
[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 219-226. (in Chinese)

第一作者简介:裴强,男,1974年6月 生,博士、教授。主要研究方向为结构 抗震。曾发表《滑坡体与抗滑桩间接触 应力的影响因素分析》(《清华大学学报 (自然科学版)》2013年第53卷第8期) 等论文。

E-mail:pqiem@163.com

《振动、测试与诊断》3 篇论文荣获首届 江苏省科技期刊百篇优秀论文奖

2022年7月5日,由江苏省科协、江苏省新闻出版局、江苏省科学技术厅联合指导,江苏省科技期刊学会 主办的首届江苏省科技期刊优秀论文评选活动圆满落幕。此次活动以"科技自立自强战略目标下科技期刊 的使命与责任"为主题,旨在深入弘扬科学家精神,集中宣传江苏省科技期刊优秀论文成果,牢固树立科学正 确的论文评价导向。该活动于2021年11月启动,遴选近三年在江苏科技期刊上的首发文章,聚焦基础研究 有重大创新、关键核心技术有重大突破、能够解决学科与产业的瓶颈问题、具有巨大应用价值的论文,有效引 导科技工作者"把论文写在祖国大地上"。

本刊有3篇论文荣获首届江苏省科技期刊优秀论文奖,分别为:

1)《煤矿机械工作状态监测系统研究》(2018年第38卷第5期),第一作者:张文栋

2)《复合材料结构损伤识别与健康监测展望》(2018年第38卷第1期),第一作者:陈雪峰

3)《直流电激励下的 IPMC 弯曲大变形力-电耦合模型》(2020 年第40卷第6期),第一作者:熊克

在此,向获奖论文的所有作者表示热烈祝贺! 向长期以来关心、支持、信任本刊的广大作者和读者表示 衷心感谢!