DOI:10.16450/j.cnki.issn.1004-6801.2024.01.010

基于宏微导向的ACO-MUSIC两级相控声源定位算法^{*}

刘 缘¹, 邓丽军¹, 程树添², 曾吕明¹, 纪轩荣¹ (1.广东工业大学机电工程学院 广州,510006) (2.广东云声科技有限公司 广州,510006)

摘要 针对传统的多重信号分类(multiple signal classification,简称 MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称 ACO)-MUSIC 两级相控声源定位算法。首 先,利用 ACO 估算出声源所在的宏观位置,再用 MUSIC 算法精确搜索声源所在的微观方位;其次,对提出的算法 进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所 在的位置;在搜索步距为 0.05°时,算法的计算复杂度和计算时间仅为传统 MUSIC 算法的 0.25% 和 2.8%。

关键词 宏微导向;蚁群算法;多重信号分类算法;声源定位算法 中图分类号 TH73;TB52⁺9

引 言

声源定位在工业和商业领域均有广泛的应用. 例如:高压放电检测[1]、气体泄漏检测[2-3]、汽车鸣笛 抓拍^[4]、车内噪声检测^[5]、结构健康监测^[6]、智能机器 人^[7-9]、智能音箱^[10]和视频会议^[10-11]等。目前,声源定 位算法主要有3大类:①到达时间差^[12-13](time difference of arrival, 简称 TDOA);②波束合成^[14-15];③高 分辨率谱估计^[16-17]。TDOA中比较经典的是广义互 相关^[18-19](generalized cross correlation, 简称GCC) 算法,该算法利用互相关来求取到达各麦克风之间 的时间差,优点是计算量小,在定位单声源时效果较 好,但随着声源数量的增加,定位效果急剧下降且抗 噪声性能差。波束合成算法是将每个阵元接收到的 信号进行延时,再将延时后的所有信号求和,故计算 量较小,易实现实时定位成像,但抗噪声和抗混响能 力差,不适用于多声源情况。高分辨率谱估计算法 的优点是定位精度、抗噪声、抗混响能力较好,且适 用于多声源,但计算量非常大。MUSIC算法是高分 辨率谱估计中的一种超分辨率算法,该算法可以用 来估计近场和远场^[20-21]的声源位置,但需要在感兴 趣的空间内进行网格搜索[22],其计算时间随着搜索 步距的减小而急剧上升,所以难以实现高精度的实 时定位成像,导致其难以在实际工程中应用。为了 解决该问题,学者们进行了大量研究。将粒子群优 化算法[23-25]、遗传算法[26]等代替传统的网格搜索方 式,虽然这些改进可以提高计算效率,但这些算法还 是存在一些缺陷,例如:收敛速度和定位精确度之间 相矛盾、算法对初始参数的选取较为严苛等。

笔者基于宏微思想,提出了一种两级声源定位算 法。首先,将搜索区域划分为若干个较大区域,对这 些区域利用ACO定位出声源所在的宏观位置;然后, 使用MUSIC算法进行精确搜索定位,最终估计出声 源所在的精确位置。仿真和实验表明:在最终搜索步 距相同时,该算法能够大幅缩减定位过程中的计算 量,从而在不降低定位精度的前提下大幅提高计算效 率和定位准确度,可满足实时定位成像的要求。

1 坐标系变换、信号模型和ACO

1.1 坐标系变换

在传统的 MUSIC 算法声源定位系统中,绝大 部分算法采用的坐标系为球坐标系或直角坐标系。 这样虽然能够带来运算上的便利,但如果后续加入 视觉系统时,需要对2个坐标系进行转换,此时会带 来诸多不便。为了解决这一问题,将坐标系由传统 的直角坐标系或球坐标系转换到了相机坐标系,为 后续加入视觉系统提供便利。

在直角坐标系统中,搜索网格点(x, y, z)与第i个麦克风 (x_i, y_i, z_i) 和参考阵元 $(x_{ref}, y_{ref}, z_{ref})$ 之间的 距离差可表示为

 ^{*} 广东省"珠江人才计划"引进创新创业团队资助项目(2016ZT06G375);国家自然科学基金资助项目(51805097, 51975131, 11804059)
 收稿日期:2021-11-23;修回日期:2021-12-20

$$D_{i}(x, y, z) = \frac{\sqrt{(x - x_{ref})^{2} + (y - y_{ref})^{2} + (z - z_{ref})^{2}}}{\sqrt{(x - x_{i})^{2} + (y - y_{i})^{2} + (z - z_{i})^{2}}}$$
(1)

为了计算方便,通常将参考阵元坐标设置为(0, 0,0)。将式(1)转换到球坐标系,可简化为

 $D_i(r,\theta,\varphi) = \sqrt{x^2 + y^2 + z^2} -$

$$\sqrt{(r\sin\theta\cos\varphi - x_i)^2 + (r\sin\theta\sin\varphi - y_i)^2 + (r\cos\theta - z_i)^2}$$
(2)

将球坐标系转换为相机坐标系,距离差表示为 $D_i(r, \alpha, \beta) = r -$

 $\sqrt{(r\cos\gamma\tan\alpha - x_i)^2 + (r\cos\gamma\tan\beta - y_i)^2 + (r\cos\gamma - z_i)^2}$ (3)

其中: α , β 分别为搜索点 $Q_i(r, \alpha, \beta)$ 与平面yOz, xOz的夹角;r为搜索点与原点O(0,0,0)之间的距离; γ 满足 tan² α + tan² β = tan² γ ; (x_i, y_i, z_i) 为第i个麦克风的坐标。

相机坐标系如图1所示。

1.2 信号模型

通过信源与接收麦克风之间的直线距离,可以 将信号的传播模型分为近场模型和远场模型两类。 *d*为接收麦克风阵列孔径;λ为声源信号的波长。若 信源与接收麦克风之间的距离大于2*d*²/λ,则传播 模型近似为远场模型^[27]。当声源处于近场模型时, 可将声音信号的传播看作球面波;当声源处于远场 模型时,为了降低计算复杂度,可将声源的传播近似 为平面波。

此处只研究远场模型,当信源处于远场模型时, 可等效为式(3)中的 $r \rightarrow \infty$ 。通过对式(3)求取极限,得到搜索点 $Q_i(r, \alpha, \beta)$ 与第i个麦克风(x_i, y_i, z_i) 和参考阵元(0,0,0)之间的距离差为

$$D_i(\alpha,\beta) = \frac{x_i \tan \alpha + y_i \tan \beta + z_i}{\sqrt{\tan^2 \alpha + \tan^2 \beta + 1}}$$
(4)

假设在远场有 D 个窄带信号^[15]传播到由 M 个 阵元组成的麦克风阵列上,则第 *i* 个麦克风接收到 的窄带信号可表示为

$$X_{i}(t) = \sum_{j=1}^{D} S_{j}(t - \tau_{ij}) + n_{i}(t)$$
(5)

其中:*i*为第*i*个麦克风,*i*=1,2,…,M;*j*为第*j*个声 源,*j*=1,2,…,D;τ_{ij}为第*j*个声源到第*i*个麦克风所 需要的传播时间;*n_i*(*t*)为第*i*个麦克风接收到的高 斯白噪声。

麦克风阵列收到的信号为

$$X(t) = A(\alpha, \beta)S(t) + N(t)$$
(6)

其中: $S(t) = [S_1(t), S_2(t), \dots, S_D(t)]^T$; $N(t) = [n_1(t), n_2(t), \dots, n_M(t)]^T$ 。

 $A(\alpha,\beta)$ 为阵列流行矢量,表示为

 $A(\alpha,\beta) = [a(\alpha_1,\beta_1), a(\alpha_2,\beta_2), \dots, a(\alpha_D,\beta_D)]^{T} (7)$ 其中: $a(\alpha_j,\beta_j) = [e^{-jw\tau_{ij}}, e^{-jw\tau_{ij}}, \dots, e^{-jw\tau_{ij}}]^{T}; (\alpha_j,\beta_j)$ 为 第 j个声源与 $yOz \ \pi xOz$ 平面之间的夹角; $w = 2\pi f; f$ 为声源信号的中心频率; τ_{ij} 为第 j个声源传播到第 i个麦克风与传播到参考阵元(0,0,0)之间的时间差, $\tau_{ij} = D_{ij}/c; D_{ij}$ 可由式(4)计算获得; c 为声速。

图 2,3分别为麦克风近场和远场模型的接收信 号示意图。

1.3 ACO

ACO算法来源于蚁群在寻找食物时的路径选择优化行为^[28],是常用来搜寻最优路径^[29]的概率型 算法,具有信息素正反馈、分布计算和启发式搜索特 征。在路径搜索过程中,每个蚂蚁个体会释放出信 息素来改变周围的环境,通过环境中信息素的量来 决定每个蚂蚁个体的下一步搜寻方向,使得搜寻过 程不断收敛,最终收敛于全局最优解。

对*i*行、*j*列组成的二维蚁群系统,蚂蚁A_{ij}的转移规则可表示为

$$p_{ij}^{k} = \begin{cases} 0 & (A_{ij} \pi \hat{k} \hat{k} \delta) \\ \frac{f_{k}^{a} \tau_{ijk}^{\beta}}{\sum_{s=1}^{N} f_{s}^{a} \tau_{ijk}^{\beta}} & (A_{ij} \hat{k} \delta \hat{j} \hat{n} \hat{n} \hat{m} \hat{n} \hat{j}) \\ 1 & (A_{ij} \hat{k} \delta \hat{j} \hat{n} \hat{m} \hat{n} \hat{n}) \end{cases}$$
(8)

其中: p_{ij}^{k} 为第*i*行、第*j*列的蚂蚁向方向*k*转移的概 率; f_{k} 为向方向*k*转移的适应度值; α 为信息启发式 因子; τ_{ijk} 为第*i*行、第*j*列的蚂蚁在方向*k*的信息量; β 为期望启发因子;*N*为转移方向个数,对于二维蚁群 来说共有4种转移方向,分别为*x*轴正、负方向和*y* 轴正、负方向。

所有蚂蚁进行一次转移之后,需要对信息量进 行更新,更新规则为

$$\tau_{ijk} = (1 - \rho)\tau_{ijk} + \rho \Delta \tau_{ijk}$$
(9)
其中: \rho为信息挥发因子。

2 基于宏微导向的远场声源定位算法

若麦克风阵列接收到的信号矩阵为*X*(*t*),设其数据协方差矩阵为*R*,则

 $R = E[X(t)X^{H}(t)] = AR_{s}A^{H} + R_{N}$ (10) 其中: R_{s} 和 R_{N} 分别为信号部分和噪声部分, $R_{N} = \sigma^{2}I$; σ^{2} 为高斯白噪声的功率大小;H表示共轭转置运算。

对矩阵 R 进行特征分解,将所得的特征值从小到 大进行排序,再将特征向量对应特征值进行排序得 到矩阵 U。根据子空间理论,矩阵 U的前 M - D列 组成噪声子空间 $U_N = [e_1, e_2, \dots, e_{M-D}]^T$,剩余的 D列构成信号子空间 $U_S = [e_{M-D+1}, e_{M-D+2}, \dots, e_M]^T$ 。

此处假设噪声与信源不相关,则信号与噪声满足正交特性,即 $A^{H}U_{N}=0$ 。MUSIC算法的空间谱估计函数表示为

$$P_{\text{MUSIC}}(\alpha,\beta) = \frac{1}{a^{\text{H}}(\alpha,\beta)U_{N}U_{N}^{\text{H}}a(\alpha,\beta)} \quad (11)$$

传统的 MUSIC 算法需要对整个空间进行网格 搜索。搜索时搜索步距过大,将导致计算精度低;搜 索步距过小,会导致计算量急剧增加。为了解决该问题,笔者提出宏微定位算法。首先,通过ACO计算出声源所在的宏观位置,然后采用MUSIC算法搜索出声源所在的微观位置。图4为该算法流程图。 算法初始参数见表1。

表1 算法初始参数

Tab.1 Initial parameters of the proposed algorithm

蚁群数量	初始	信息启发	期望启发	信息挥发
	信息量	因子	因子	因子
20×20	1	1	1	0.3

3 仿真与结果

3.1 仿真设计

本研究算法的主要优点是在不降低定位精度的 同时大幅提高计算效率,并且适配了相机坐标系。 首先,将传统的 MUSIC 算法定位结果与本研究算 法的计算结果进行对比;其次,使用均方根误差 (root mean squared error,简称 RMSE)曲线对本研 究算法和传统的 MUSIC 算法定位误差进行分析; 最后,对不同搜索步距下 2 种算法的计算复杂度和 计算时间进行对比分析。

仿真时采用的麦克风阵列拓扑图如图 5 所示。麦克风数量为 8,其拓扑结构为均匀圆形阵列,半径 $R = \lambda/(4\sin(\pi/M))$,其中: λ 为声源波长;M为麦克风数量。仿真加入高斯白噪声,2个声源频率均为 20 kHz的正弦信号、声速 c = 340 m/s,快拍数为 1 024。

3.2 仿真分析

3.2.1 定位性能分析

声源实际位置和仿真计算结果对比如表2所

示。其中:信噪比为 20 dB;传统 MUSIC 算法计算 时搜索像素点为 150×150。声源 1 的实际声源位置 为 $\alpha_1 = -35.86^\circ, \beta_1 = 24.44^\circ;$ 声源 2 的实际声源位 置为 $\alpha_2 = 39.56^\circ, \beta_2 = -37.54^\circ$ 。图 6 为 MUSIC 算 法和本研究算法定位结果。可以看出,本研究算法 比传统的 MUSIC 算法定位误差更小,可以对远场 的声源进行更加准确的二维位置估计。

	表 2	声源实	际位	立置和仿	真计算	结果对比	5
Tab.2	Com	parison	of	actual	sound	source	position

and the simulation results

类型	位置	定位	结果	误差	
		传统 MU- SIC 算法	本研究 算法	传统 MUSIC 算法	本研究 算法
声源1	$\alpha_1/(°)$	-35.9731	-35.8787	-0.1131	0.018 7
	$\beta_1/(°)$	24.161 0	24.484 8	-0.2790	0.044 8
声源2	$\alpha_2/(°)$	39.194 6	39.515 1	0.3654	0.044 9
	$eta_{\scriptscriptstyle 2}/(\degree)$	-37.0469	-37.4949	0.493 1	0.045 1

3.2.2 均方根误差分析

为了分析本研究算法定位的稳定性,在7种不 同的信噪比下进行了数据仿真。每个信噪比先进行 50次数值仿真计算,然后再计算50次数值仿真结果 定位误差的平均均方根误差(root mean squared error,简称RMSE)。不同信噪比的定位RMSE曲线 如图7所示。可以看出:当信噪比小于等于0dB时, 2种算法的RMSE 值区别不大:当信噪比大于0 dB 时,随着信噪比的提高,本研究算法的RMSE曲线 快速下降,而传统 MUSIC 算法的 RMSE 曲线下降 缓慢。这说明当信噪比大于0dB时,随着信噪比的 提高,本研究算法比传统 MUSIC 算法具有更好的 定位精度和稳定性。信噪比较低时,噪声和信号子 空间难以分离,导致2个子空间边界模糊,此时降低 搜索步距不能提高定位精度,故本研究算法在低信 噪比时和传统 MUSIC 算法定位精度差别不大。但 是在高信噪比时,噪声和信号子空间可以彻底分离,

Fig.6 Positioning results of MUSIC algorithm and our algorithm

此时可以通过降低搜索步距来提高定位精度,导致 本研究算法的RMSE曲线快速下降。

3.2.3 计算时间分析

为了分析本研究算法和传统的 MUSIC 算法在 定位过程中的耗时对比,计算了在不同搜索步距下, 传统 MUSIC 算法和本研究算法的计算时间。2种 算法不同搜索步长的计算时间如图 8 所示。其中: 信噪比 SNR=0 dB;单个步距计算次数为 50。

当搜索步距均为0.05°时,传统的MUSIC算法 定位消耗时间平均为29.18 s,本研究算法定位耗时 平均为0.822 8 s,此时仅为传统MUSIC算法的 2.8%;当搜索步距为0.1°时,本研究算法花费的时

间是传统 MUSIC 算法的 5.1%。可见,本研究算法 需要的时间更少且对搜索步距不敏感,但传统 MU-SIC 算法对于搜索步距非常敏感,且随着搜索步距 的减小,整个计算时间急剧增加。

造成计算时间的差异在于搜索声源位置时的计 算复杂度不同。传统 MUSIC 算法的计算复杂度为 $(\alpha_{max} - \alpha_{min})(\beta_{max} - \beta_{min})/(\Delta \alpha \Delta \beta)$,其中: $\Delta \alpha \pi \Delta \beta$ 为 2个方向的搜索步距。本研究算法的计算复杂度为 $N_{ant} + Dn$,其中: N_{ant} 为蚁群数量;D为声源个数;n为精确搜索时的搜索计算复杂度。例如,当搜索步 距为 0.05°时,传统 MUSIC 算法的计算复杂度为 1.024 × 10⁷,本研究算法的计算复杂度为 2.6 × 10⁴, 仅为传统 MUSIC 算法的 0.25%,故采用本研究算 法通过降低计算复杂度来大幅提高定位计算效率。

4 实验验证

4.1 实验设计

整个实验系统由麦克风阵列、数据采集设备、分析处理和结果显示等部分组成。麦克风阵列是由8个均匀分布的麦克风(SPU0410LR5H-QB, KNOWLES)组成,主要是将声音的振动信号转换为电信号。数据采集设备主要由NI机箱(NIPX-Ie-1071)和数据采集卡(12bit, PXIe-5105, NI)组成,该设备主要是将麦克风转换过来的电信号采集进电脑内存中,并保存到本地。分析处理通过采用本研

究算法将保存下来的数据通过Matlab软件完成声源 定位;电脑显示屏完成定位结果的显示。实验地点 是超净室,定位时将整个系统固定在光学平台上,麦 克风阵列的中心距光学平台水平面320.40 mm,采样 率设为1000 kHz。整个实验系统如图9所示。麦克 风灵敏度为-38 dBV/Pa,声源中心频率为20 kHz。

(a) Beam path diagram

4.2 实验结果分析

表 3 为声源实际位置和实验结果对比,是对 2 个声源进行多次定位求平均值之后的结果,展示了 2 种算法的最终定位结果和定位误差值。声源 1 的 真实位置 $\alpha_1 = -40.28^\circ$, $\beta_1 = -17.46^\circ$; 声源 2 的真

Tab.3 Comparison of actual sound source position and the experimental result 定位结果 误差 类型 位置 传统MUSIC算法 本研究算法 传统 MUSIC 算法 本研究算法 -40.4762 $\alpha_1/(°)$ -39.26171.018 3 -0.1962声源1 $\beta_1/(°)$ -19.9329-16.6667-2.47290.7933 $\alpha_2/(°)$ -1.779530,000.0 26.190 5 2.030.0 声源2 7.1429 $\beta_2/(°)$ 9.8658 2.015 8 -0.7071

表3 声源实际位置和实验结果对比

实位置 $\alpha_2 = 27.97^\circ, \beta_2 = 7.85^\circ$ 。

图 10 为实验结果对比。表4 和图 10 表明:本研究 算法可以对远场的声源进行较为准确的定位,而传统 的 MUSIC 算法定位误差较大,本研究算法能够大幅 降低定位误差,提升定位的精度,综合定位效果更好。

5 结 论

1)利用ACO-MUSIC算法能够有效定位出二 维声源所在的位置。

2)利用基于宏微导向的ACO-MUSIC算法定 位的声源位置比传统的MUSIC算法定位出的位置 RMSE误差更小,能够达到更高的定位精度和定位 效率。

3)实验验证时采用压电片作为声源,该声源干扰较小且频带较窄,同时验证了远场模式下的二维 单、双声源的定位实验。在接下来的工作中将进一 步研究三维实时定位成像算法,为气体泄漏检测、高 压放电检测、结构健康监测和智能监控等领域提供 切实可靠的理论依据。

参考文献

- [1] 辛晓虎,李继胜,纪海英,等.用于变压器中局部放电定位的十字形超声阵列传感器研究[J].中国电机工程学报,2013,33(21):154-162.
 XIN Xiaohu, LI Jisheng, JI Haiying, et al. Study of cross-shaped ultrasonic array senor applied to partial discharge location in transformers[J]. Proceedings of the CSEE, 2013, 33(21):154-162. (in Chinese)
- [2] QI L, ZENG Z M, ZHANG Y, et al. Research on leakage location of spacecraft in orbit based on frequency weighting matrix beamforming algorithm by lamb waves [J]. Applied Sciences-Basel, 2020, 10(4): 1201.
- [3] LI L, YANG K, BIAN X Y, et al. A gas leakage localization method based on a virtual ultrasonic sensor array[J]. Sensors, 2019, 19(14): 3152.

- [4] 杨殿阁,张凯,苗丰,等.运动声源快速定位的声达时 差法[J].声学学报,2020,45(1):69-76.
 YANG Diange, ZHANG Kai, MIAO Feng, et al. Fast moving sound source location method based on time difference of arrival [J]. Acta Acustica, 2020, 45(1): 69-76. (in Chinese)
- [5] WANG C G, JIANG W K. A novel transmissibility matrix method for identifying partially coherent noise sources on vehicles[J]. Applied Acoustics, 2020, 165: 107318.
- [6] 郭师峰,李叶海,李振,等.柔性超声传感结构健康监测 技术现状与展望[J].振动、测试与诊断,2020,40(3): 427-436.

GUO Shifeng, LI Yehai, LI Zhen, et al. The status and prospects of flexible transducers in ultrasonic wavesbased structural health monitoring[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3):427-436. (in Chinese)

- [7] LUNA-AGUILAR C A, MORALES-DIAZ A B, CASTELAN M, et al. Incorporation of acoustic sensors in the regulation of a mobile robot [J]. Advanced Robotics, 2019, 33(2): 61-73.
- [8] LI X F, SHEN M, WANG W M, et al. Real-time sound source localization for a mobile robot based on the guided spectral-temporal position method[J]. International Journal of Advanced Robotic Systems, 2012, 9(3): 78.
- [9] HU J S, LIU W H, CHENG C C. Indoor sound field feature matching for robot's location and orientation detection[J]. Pattern Recognition Letters, 2008, 29(2): 149-160.
- [10] 闵新宇,王清理,冉云飞.基于麦克风阵列的语音增强 算法[J].计算机工程与设计,2020,41(4):1075-1079.
 MIN Xinyu, WANG Qingli, RAN Yunfei. Speech enhancement algorithm based on microphone array [J].
 Computer Engineering and Design, 2020, 41(4):1075-1079. (in Chinese)
- [11] ZHU M Y, YAO H, WU X K, et al. Gaussian filter for TDOA based sound source localization in multimedia surveillance [J]. Multimedia Tools and Applications, 2018, 77(3): 3369-3385.
- [12] KRALJEVIC L, RUSSO M, STELLA M, et al. Free-field TDOA-AOA sound source localization using three soundfield microphones[J]. IEEE Access, 2020, 8: 87749-87761.
- [13] 刘海涛,陈永华,林艳明,等.基于TDOA多声源定位的虚假声源消除方法[J].振动、测试与诊断,2021,41(2):319-326.
 LIU Haitao, CHEN Yonghua, LIN Yanming, et al.

Mult-source localization method of elimination phantom sound source based on TDOA[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(2): 319-326. (in Chinese)

- [14] MA W, BAO H, ZHANG C, et al. Beamforming of phased microphone array for rotating sound source localization [J]. Journal of Sound and Vibration, 2019, 467: 80.
- [15] 王杰,黄丽霞,张雪英.改进DSB方法的语音信号多声源定位[J].计算机工程与应用,2021,57(1): 173-180.
 WANG Jie, HUANG Lixia, ZHANG Xueying. Multisource location of speech signal based on improved DSB eethod [J]. Computer Engineering and Applications,
- 2021, 57(1):173-180.(in Chinese)
 [16] LI R, XU L, SHI X W, et al. Two-dimensional NC-MUSIC DOA estimation algorithm with a conformal cylindrical antenna array[J]. Journal of Electromagnetic Waves and Applications, 2011, 25(5/6): 805-818.
- [17] WEN F, WAN Q, FAN R, et al. Improved MUSIC algorithm for multiple noncoherent subarrays [J]. Ieee Signal Processing Letters, 2014, 21(5): 5-8.
- [18] ZHU N, REZA T. A modified cross-correlation algorithm to achieve the time difference of arrival in sound source localization [J]. Measurement and Control, 2019, 52(3/4): 212-221.
- [19] 张岁岁,黄丽霞,王杰,等.麦克风阵列下互相关函数 分类的声源定位[J].计算机工程与应用,2020,56(4): 128-133.

ZHANG Suisui, HUANG Lixia, WANG Jie, et al. Localization of sound source with classification of crosscorrelation function within microphone array [J]. Computer Engineering and Applications, 2020, 56(4):128-133. (in Chinese)

- [20] 唐晟琨, 卢绪祥, 苏一民. 近场多声发射信号源定位 分析[J]. 计算机仿真, 2014, 31(5): 271-275.
 TANG Shengkun, LU Xuxiang, SU Yimin. Multisource location analytics of near-field acoustic emission signal based on EMD and MUSIC[J]. Computer Integrated Manufacturing Systems, 2014, 31(5): 271-275. (in Chinese)
- [21] JU T L, XU Y L, PENG Q C. Speech source localization in near field [C] //2004 International Conference on Communications, Circuits and Systems. Chengdu: IEEE, 2004: 769-772.
- [22] 曾宪燎,李炜.嵌套均匀线阵的近场声源三维定位算 法[J].计算机工程,2016,42(2):307-311.
 ZENG Xianliao, LI Wei. Near field speech source 3D localization algorithm of nested uniform linear array[J].
 Computer Engineering, 2016, 42(2): 307-311. (in Chinese)
- [23] 杨兴,周围.智能天线中基于粒子群算法的二维DOA

估计[J]. 广东通信技术, 2010, 30(5): 37-40.

YANG Xing, ZHOU Wei. Two dimensional DOA estimation based on particle swarm optimization in smart antenna [J]. Guangdong Communication Technology, 2010, 30(5):37-40. (in Chinese)

- [24] WANG P P, CHEN X X, ZHANG Y, et al. IBPSObased MUSIC algorithm for broken rotor bars fault detection of induction motors [J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 80.
- [25] MENG C L, CHEN S W, CHANG A C. Direction-ofarrival estimation based on particle swarm optimization searching approaches for CDMA signals [J]. Wireless Personal Communications, 2015, 81(1): 343-357.
- [26] 王霖郁,康新.基于种群优化的遗传算法的MUSIC谱 峰搜索技术[J].计算机应用研究,2014,31(12): 3543-3546.
 WANG Linyu, KANG Xin. Research on MUSIC spec-

tral peak searching based on improved population genetic algorithms [J]. Application Research of Computers, 2014, 31(12):3543-3546. (in Chinese)

[27] 李蜀丰, 徐永绍, 刘秉政, 等. 基于改进 MUSIC 的声源定位方法[J]. 电子测量与仪器学报, 2021, 35(8): 212-219.

LI Shufeng, XU Yongshao, LIU Bingzheng, et al. Sound source localization method based on improved MUSIC[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(8): 212-219. (in Chinese)

- [28] COLORNI A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies [C] // Proceedings of ECAL91-European Conference on Artificial Life. Paris: Elsevier Publishing, 1991: 134-142.
- [29] DORIGO M, GAMBARDELLA L M. Ant colonies for the travelling salesman problem [J]. Biosystems, 1997, 43(2): 73-81.

第一作者简介:刘缘,男,1994年1月 生,硕士生。主要研究方向为声源定 位。曾发表《Centimeter-scale widefield-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo》(《Biomedical Optics Express》2021, Vol.12, No.5)等论文。 E-mail:yuanliu20201010@163.com

通信作者简介:纪轩荣,男,1980年8月 生,博士、教授、博士生导师。主要研究 方向为超声无损检测。 E-mail:xr.ji@gdut.edu.cn