首页  |  期刊简介  |  期刊荣誉  |  编委会  |  现任主编  |  投稿指南  |  下载中心  |  期刊征订
中文核心期刊
Ei Compendex收录期刊
中国科学引文数据库来源期刊
中文科技期刊数据库收录期刊
国际刊号:1004-6801
国内刊号:32-1361/V
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中华人民共和国工业和信息化部
  • 主办:南京航空航天大学
  •           全国高校机械工程测试技术研究会
  • 国际刊号:1004-6801
  • 国内刊号:32-1361/V
  • 地址:南京市御道街29号
  • 电话:025-8489 3332
  • 传真:025-8489 3332
  • E-mail:qchen@nuaa.edu.cn
  • 邮编:210016
基于自适应CEEMD的非平稳信号分析方法
Non-stationary Signal Analysis Method Based on Adaptive CEEMD
  
DOI:10.16450/j.cnki.issn.1004-6801.2020.01.009
中文关键词:  互补集总经验模态分解  模态混叠  最小二乘互信息  网格搜索算法  微故障特征提取
英文关键词:complementary ensemble empirical mode decomposition (CEEMD)  mode mixing  least squares mutual information (LSMI)  grid search algorithm (GSA)  micro-fault feature extraction
基金项目:国家自然科学基金资助项目(51975433);湖北省自然科学基金资助项目(2019CFB133)
作者单位
徐波1,2,黎会鹏1,2,周凤星1,严保康1,严丹2,刘毅2,3 (1.武汉科技大学信息科学与工程学院 武汉430081) (2.黄冈师范学院物理与电信学院 黄冈438000)(3.华中科技大学机械科学与工程学院 武汉430074) 
摘要点击次数: 29
全文下载次数: 11
中文摘要:
      由于标准的互补集总经验模态分解(complementary ensemble empirical mode decomposition, 简称CEEMD)在处理模态混叠问题时缺乏自适应性,其本质是分解信号获得的本征模态函数(intrinsic mode function, 简称IMF)之间产生了一定的信息耦合现象,使IMF分量不能正确地反映信号的真实成分。因此,提出了在使用CEEMD分信号的过程中嵌入网格搜索算法(grid search algorithm, 简称GSA),以最小二乘互信息(least squares mutual information, 简称LSMI)为网格搜索算法的适应度函数,构造一个自适应CEEMD方法。该算法通过自适应地搜索最佳的白噪声幅值,修正信号分解过程中产生的少量的耦合频率成分,确保每个IMF分量之间信息的正交性,以进一步抑制模态混叠问题最后,通过仿真实验验证了该方法的有效性,并将该方法用于提取滚动轴承微故障的特征频率。实验结果表明,该算法在滚动轴承的微故障特征提取应用中具有更少的迭代数、IMF分量以及相对更小的计算量。
英文摘要:
      The problem of "mode mixing" is one of the main problems limiting the empirical mode decomposition in engineering applications. An improved algorithm of complementary ensemble empirical mode decomposition (CEEMD) as empirical mode decomposition (EMD) improves the mode mixing problem of EMD to some extent. However, the standard CEEMD method still empirically set the amplitude of white noise, and it is not adaptive to deal with the mode mixing problem. By studying the phenomenon of modal aliasing, its essence is that the intrinsic mode function (IMF) is obtained by decomposing the signal generates certain information coupling phenomenon, which cannot make the IMF component accurately reflect the real components of the signal. Therefore, this paper proposes to embed grid search algorithm (GSA) in the process of decomposing signals with CEEMD, and to construct an adaptive CEEMD method by taking least squares mutual information (LSMI) as the fitness function of GSA. The algorithm adaptively searches for the optimal white noise amplitude, corrects a small number of coupling frequency components generated during signal decomposition, ensures the orthogonality of information between each IMF component, and further inhibits the mode aliasing problem. Finally, the effectiveness of the proposed method is verified by simulation test, and it is used to extract the characteristic frequency of micro-fault of rolling bearing. The experimental results show that the algorithm has less iteration numbers, less IMF components and relatively less calculation amounts in the application of micro-fault feature extraction of rolling bearing.
查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《振动、测试与诊断》

地址:南京市御道街29号        邮编:210016

电话:025-8489 3332      传真:025-8489 3332       E-mail:qchen@nuaa.edu.cn

您是本站第1991422位访问者 本站今日一共被访问362

技术支持:北京勤云科技发展有限公司