首页  |  期刊简介  |  期刊荣誉  |  编委会  |  现任主编  |  投稿指南  |  下载中心  |  期刊征订
中文核心期刊
Ei Compendex收录期刊
中国科学引文数据库来源期刊
中文科技期刊数据库收录期刊
国际刊号:1004-6801
国内刊号:32-1361/V
用户登录
  E-mail:  
  密  码:  
  作者 审稿  
  编辑 读者  
期刊向导
联系方式
  • 主管:中华人民共和国工业和信息化部
  • 主办:南京航空航天大学
  •           全国高校机械工程测试技术研究会
  • 国际刊号:1004-6801
  • 国内刊号:32-1361/V
  • 地址:南京市御道街29号
  • 电话:025-8489 3332
  • 传真:025-8489 3332
  • E-mail:qchen@nuaa.edu.cn
  • 邮编:210016
基于VMD-MDE和ELM的柱塞泵微弱故障诊断
Weak Fault Diagnosis of Axial Piston Pump Based on VMD-MDE and ELM
  
DOI:10.16450/j.cnki.issn.1004-6801.2020.04.001
中文关键词:  变分模态分解  多尺度散布熵  极限学习机  特征能量占比  滑靴磨损  微弱故障诊断
英文关键词:variational modal decomposition(VMD)  multiscale dispersion entropy(MDE)  extreme learning machine(ELM)  feature energy ratio(FER)  sliding shoe wear  weak fault diagnosis
基金项目:(国家自然科学基金资助项目(51675364)
作者单位
程珩1,2,3,励文艳1,2,3,权龙1,2,3,赵立红1,2,3,关澈1,2,3,韩露1,2,3 (1.太原理工大学新型传感器与智能控制教育部重点实验室 太原030024)(2.太原理工大学新型传感器与智能控制山西省重点实验室 太原030024)(3.太原理工大学机械工程学院 太原030024) 
摘要点击次数: 124
全文下载次数: 74
中文摘要:
      针对早期微弱故障信号易受噪声干扰、难以提取和识别的问题,提出一种基于变分模态分解(variational mode decomposition,简称VMD)多尺度散布熵(multiscale dispersion entropy, 简称MDE)和极限学习机(extreme learning machine,简称ELM)的柱塞泵微弱故障诊断方法。首先,采集各状态的振动信号进行VMD分解,得到若干模态分量,根据各模态分量Hilbert包络谱中特征频率能量贡献率大小,提出以归一化特征能量占比(feature energy ratio,简称FER)为重构准则的变分模态分解特征能量重构法(variational mode decomposition feature-energy-reconsitution,简称VMDF),对各模态分量进行信号重构;其次,计算重构信号的MDE,对各尺度散布熵进行分析,选择有效尺度散布熵作为特征向量;最后,将提取的特征向量输入ELM完成故障模式识别。柱塞泵不同程度滑靴端面磨损故障的实验结果表明,该方法不仅提高了模式识别效率,还可以更好地反映故障程度变化规律,具有较好的应用性。
英文摘要:
      To solve the problems that early weak fault signals are susceptible to noise interference and difficult to extract and identify, a piston pump weak fault diagnosis method based on variational mode decomposition (VMD), multiscale dispersion entropy (MDE) and extreme learning machine (ELM) is proposed. First, the vibration signals of various states to perform VMD are collected to obtain several modal components. According to the feature frequency energy contribution rate in the Hilbert envelope spectrum of each modal component, the variational modal decomposition feature energy reconstruction method (VMDF) with normalized feature energy ratio (FER) as the reconstruction criterion is proposed to reconstruct the signal of each modal component. Then, the MDE of the reconstructed signals are calculated. After analyzing the dispersion entropy at each scale, the effective scale dispersion entropy is selected as the feature vector. Finally, the feature vector is input to the ELM for pattern recognition. The verification results of the examples of the sliding shoe surface wear fault to varying degrees show that the proposed method can not only improve the efficiency of pattern recognition, but also better reflect the change law of fault degree. So, the proposed method has better applicability.
查看全文  查看/发表评论  下载PDF阅读器
关闭

Copyright @2010-2015《振动、测试与诊断》

地址:南京市御道街29号        邮编:210016

电话:025-8489 3332      传真:025-8489 3332       E-mail:qchen@nuaa.edu.cn

您是本站第2174634位访问者 本站今日一共被访问158

技术支持:北京勤云科技发展有限公司