DOI:10.16450/j.cnki.issn.1004-6801.2024.01.023

声发射信号在带筋结构中的传播特性^{*}

韩 聪^{1,2}, 姜广义³, 刘 暄², 杨国安²
 (1.太原理工大学机械与运载工程学院 太原,030024)
 (2.北京化工大学机电工程学院 北京,100029)
 (3.中国航发沈阳发动机研究所 沈阳,110015)

摘要 为了研究带筋结构对声发射(acoustic emission,简称 AE)信号传播的影响,分析了 AE 信号在带筋薄板和带 筋薄壁圆筒 2种带筋结构中的传播特性。首先,提出了多径传播模型,推导出了传感器的安装约束条件,可在时域 中凸显出从带筋结构处散射的信号;其次,对不同频率的 AE 信号在不同高度带筋结构中的传播进行了数值模拟, 利用构建的反射和透射系数量化表征了 AE 信号的传播特性;最后,实验结果验证了数值模拟的准确性。结果表 明:AE 信号在加强筋处会发生反射和透射,并伴随着模态转换演变出其他模态;反射和透射系数相对于激励频率 和加强筋高度均呈现出非线性特征,激励频率越高,反射和透射系数对加强筋高度的变化越敏感。该研究阐明了 AE 信号在带筋结构中的传播机制,可为 AE 监测中优化传感器空间布置提供指导。

关键词 声发射信号;带筋结构;多径模型;反射;透射 中图分类号 V19;TH17

引 言

发动机作为飞行器的关键部件,长期工作在大 应力、强振动、高速和高温等环境下,易出现故障^[1]。 常规监测方法无法实时在线监测到早期损伤,而基 于AE的在线结构健康监测方法在处理发动机早期 故障时具有显著优势。AE技术可以对设备进行全 面且长期的连续监视^[2]。受复杂结构及高温环境的 限制,发动机上只有温度较低的机匣外表面适合布 置AE传感器,为追求结构轻量化,机匣表面附有大 量的安装边等带筋结构。故障AE信号在经过带筋 结构时会发生扩散、散射等衰减,同时伴随模态转换 及波形混叠等畸变现象,造成故障与接收的信号之 间的映射关系错综复杂,增加了损伤识别的难度。 因此,明确带筋结构对故障AE信号传播的影响,对 提高AE技术的诊断准确率具有重要意义。

目前,已有很多学者聚焦于AE信号在带筋板 结构中的传播特性研究。AE信号在结构尺寸与其 波长相当的构件中主要以Lamb模态传播。李一博 等^[3]研究了加强筋对Lamb波透射特性的影响。刘 治东等^[4]模拟了AE信号在环形加筋板处的模态转 换现象。 机匣和支板裂纹 AE 信号的频带在 150 kHz 左 右,且损伤主要发生在结构表面。根据模态 AE 理 论可知,AE 信号在板类结构中传播以 A。模态为主, 在机匣中传播以轴向 L(0,1)模态为主。笔者将裂 纹 AE 信号分解为单一频率模态进行传播特性 研究。

1 模型建立

1.1 AE信号在带筋结构处的传播

图1为AE信号在带筋结构处的传播示意图。 入射波在某一位置*x*和时刻*t*的位移*u*_{in}为

$$u_{\rm in} = A \,\mathrm{e}^{\mathrm{i}(kx - \omega t)} \tag{1}$$

其中:A为振幅;k为波数;ω为频率。 加强筋左侧波场位移u_i可表示为

机匣简化后可看作为带筋薄壁圆筒。目前,对 AE信号在带筋薄壁圆筒中的研究较少,仅有一些 研究涉及AE信号在圆柱型结构中的传播特性。文 献[5]研究了不同导波在管道缺口处的传播情况。 肖俨衍等^[6]研究了AE信号在阶梯轴中的传播特性。 可见,以上研究对AE信号在带筋结构中传播机理 的描述不够深入,且对传感器的布置准则鲜有讨论。

^{*} 国家自然科学基金资助项目(51575035) 收稿日期:2021-11-24;修回日期:2023-02-17

图1 信号在带筋结构处的传播示意图

Fig.1 Schematic diagram of the signal propagation at the stiffened structure

$$u_{l} = A(x) e^{i(kx - \omega_{t})} + \sum_{a=1}^{M} A_{a}(x) e^{i(-k_{a}x - \omega_{a}t)} \quad (2)$$

其中:A(x)为直达波的幅值; $A_a(x)$ 为第a个反射波 包的幅值;M为反射波的总个数。

第a个波包的反射系数R_a为

$$R_a = \left| A_a(x) / A(x) \right| \tag{3}$$

加强筋的右侧波场位移 ur 可以表示为

$$u_{r} = \sum_{b=1}^{N} A_{b}'(x) e^{i(k_{b}x - \omega_{b}t)}$$
(4)

其中:A'_b(x)为第b个透射波的幅值。

第b个波包的透射系数T_b为

$$T_{b} = |A_{b}'(x)/A_{0}'(x)|$$
(5)

其中:A₀(x)为无加强筋时入射波传播至相同位置 处的幅值。

1.2 多径传播模型

虽然故障源 AE 信号中包含多个频率及模态, 但在基础研究中应从各模态的角度进行分析。因此, AE 激励信号可表示为

$$J(t) = 0.5 \sin\left(2\pi f_{\circ}t\right) \left[1 - \cos\left(2\pi f_{\circ}t/B\right)\right]$$
(6)

其中:J(t)为激励函数;f。为激励信号的中心频率;B 为波包的波峰数,在本研究中等于3。

AE信号带筋结构的多径传播模型如图2所示。 当曲率半径 R_e为常数时,加筋结构为带筋圆柱壳 体。当 R_e为无限大时,加筋结构将变为加筋板。

反射波和直达波、边界反射波分离的条件为

$$\begin{cases}
\Delta T_{1} = T(R_{1}) - T(D_{r}) \geq B/f_{o} \\
\Delta T_{2} = T(R_{2}) - T(R_{1}) \geq B/f_{o} \\
\Delta T_{3} = T(R_{3}) - T(R_{1}) \geq B/f_{o} \\
\Delta T_{4} = T(R_{4}) - T(R_{1}) \geq B/f_{o}
\end{cases}$$
(7)

其中: $T(D_r), T(R_1), T(R_2), T(R_3)$ 和 $T(R_4)$ 分别

Fig.2 The multipath propagation model for the stiffened structure

为直达、从加强筋反射、绕圆周传播和从构件边界反射信号被反射测点接收的时间。

将图2中的参数代入式(7),可得

$$\begin{cases} d_{2} \geq Bv_{g}(M_{1})/2f_{o} \\ \frac{\sqrt{(d_{1})^{2} + (2\pi R_{e})^{2}}}{v_{g}(M_{2})} - \frac{d_{1} + 2d_{2}}{v_{g}(M_{1})} \geq \frac{B}{f_{o}} \\ d_{4} \geq Bv_{g}(M_{1})/(2f_{o}) + d_{2} \\ d_{3} + d_{5} \geq Bv_{g}(M_{1})/2f_{o} \end{cases}$$
(8)

其中: $v_{g}(M_{\rho})$ 为该模态的群速度, $p=1,2;M_{\rho}$ 指AE 信号在构件中传播时的不同模态。

同理,透射信号的分离条件为

$$\begin{cases}
\frac{\sqrt{(d_1 + d_2 + d_3)^2 + (2\pi R_e)^2}}{v_g(M_2)} - \frac{d_1 + d_2 + d_3}{v_g(M_1)} \ge \frac{B}{f_o} \\
d_5 \ge Bv_g(M_1)/2f_o \\
d_4 \ge Bv_g(M_1)/2f_o
\end{cases}$$
(9)

根据式(8)和式(9)可以获得激励源、反射测点 和透射测点的位置参数。

2 数值模拟

应用有限元技术对AE信号在带筋结构中的传

播特性进行了数值模拟,图3为数值模拟中的三维 模型。带筋薄板中主板尺寸为600 mm×300 mm× 5 mm,加强筋位于主板中间,尺寸为300 mm× 5 mm×h mm。h为加强筋高度,带筋薄壁圆筒模型 中圆筒外径为1000 mm,壁厚为2 mm,轴向长为 600 mm。轴向长为5 mm,外径为(1000+2h) mm 的加强筋附着在薄壁圆筒上并位于其轴向的中间。 考虑到强度设计要求和实际尺寸,在本研究中h的 变化范围为0~35 mm。以动态位移的方式在激励 点处添加垂直于接触面的AE信号,本研究中激励 频率 f_{\circ} 的变化范围为100 kHz~170 kHz。根据AE 信号的频散特性,得到满足波形分离条件 d_1 = 30 mm, d_2 =50 mm, d_3 =100 mm, d_4 =220 mm, d_5 = 200 mm。

- 图 3 数值模拟中的三维模型(单位:mm)
- Fig.3 Three-dimensional models used in numerical simulations (unit:mm)

模拟材料选择航空领域常用的铝合金,材料性能如表1所示。仿真中边界条件是自由的,时间步 长和最大单元网格分别为0.2 μs 和0.8 mm。数值 模拟的时间长度为0.1 ms,可以包含所需信号。

表1 材料性能 Tab.1 Material properties

材料	弹性模量/GPa	$ ho/(\mathrm{kg} \cdot \mathrm{m}^{-3})$	泊松比
铝合金	70	2 700	0.33

3 实 验

实验在2个与模拟具有相同材料属性的铅制试件上进行,以验证所提模型和模拟的有效性。试件1为薄壁圆筒,外径为1000 mm,壁厚为2 mm,轴向长为600 mm。试件2为带筋薄壁圆筒,其中薄壁圆筒的尺寸与试件1一致,加强筋附着在薄壁圆筒上并位于其轴向的中间,加强筋轴向长为5 mm,外径为1032 mm。传感器安装位置与模拟设置一致。

图4为实验示意图。激励信号由波形发生器产 生,由传感器#1传递给试件。在信号采集中使用传 感器#2和#3用于测量反射和透射信号。使用的传 感器均为谐振式传感器,且在传感器和试件之间添 加了耦合剂。声发射软件参数如表2所示。

(a) Experimental system diagram

(b) 试件2实物图
(b) Specimen 2 physical picture
图 4 实验示意图
Fig.4 Experimental schematic

表2 声发射软件参数

Tab.2	AE	software	parametric	setup
-------	----	----------	------------	-------

参数	采样频率/	₩ # 频率/		预触发时
	MHz	木忓只奴/K	槛/dB	间/μs
数值	2.5	1 024	25	256

4 结果与分析

4.1 带筋薄板

4.1.1 AE信号传播过程

图 5 为 f_o=150 kHz 和不同 h下采集的响应波形,可观察到直达波、从加强筋反射波和透射波。从

图 5 可以看出,反射波和透射波呈现出不同的叠加 波形。这是因为反射波和透射波分别传播至反射和 透射测点,沿加强筋传播的波在末端反射后重新回 到主板中,再次沿结构特征传播,与首次反射波和透 射波在时域上发生混叠,一起被测点接收。加强筋 高度的变化及各模态波间不同的速度,使得由测点 接收到的响应呈现出不同的混叠波形。

4.1.2 传播特性量化分析

根据式(3),(5)计算的反射和透射系数随激励 频率和加强筋高度的变化如图6所示。

当激励频率一定时,从图6(a)可看到反射系数在 加强筋高度为5mm左右时达到最大值,此时图6(b) 中透射系数出现最小值。随着加强筋高度的增加,反 射系数与透射系数的波动趋势相反。加强筋高度继 续增加,反射和透射系数几乎都保持稳定不变。

不同激励频率下的散射系数相对于加强筋高度 的变化率也不相同。当激励频率 f_0 =100 kHz时,反 射系数最大值与透射系数最小值均出现在加强筋高 度为5 mm处,而 f_0 =170 kHz时则为4 mm处。在 f_0 = 100 kHz的情况下,当加强筋高度大于27 mm时,反 射和透射系数都趋于稳定。当 f_0 =170 kHz,加强筋 高度大约在23 mm以上是稳定的。这表明激励频 率越高,信号对加强筋高度的变化越敏感,反射和透 射系数越早达到极值,且越早变得平稳。

Fig.6 Reflection and transmission coefficients versus the excitation frequency and the stiffener height

4.2 带筋薄壁圆筒

4.2.1 AE信号传播过程

在薄壁圆筒表面沿径向激励AE信号时,会产 生以L(0,1)模态为主的AE信号。图7为在 f_o = 150 kHz和不同h下采集的响应波形。该现象与平板中 A_o 模态波类似,不再赘述。

4.2.2 传播特性量化分析

反射和透射系数随激励频率和加强筋高度的变 化如图8所示。图8中颜色差异变化体现了反射和 透射系数的变化情况,可以观察到两者的波动呈相 反趋势,随后均趋于稳定,这直观地说明了反射和透 射系数的变化都是非线性的。此外,激励频率越高, 反射和透射系数相对于加强筋高度变平稳的点越早 出现,表明信号对加强筋高度变化的敏感性随着激 励频率的增加而增加。

4.2.3 实验验证

在试件1上进行实验,采集不同激励频率下AE信 号在薄壁圆筒中传播时的基线参考信号。每次测量之 间保持几分钟的间隔,以确保实验结果不会受到前一 个信号的干扰。在试件2上执行同样的步骤来接收AE 信号在带筋薄壁圆筒中的反射波形和透射波形。

断铅(pencil lead break,简称 PLB)产生的 AE 信号与金属裂纹产生的 AE 信号极为相似,因此使

Fig.7 Collected waveform with $f_0 = 150$ kHz and different h

用断铅产生分解前的AE信号。图9为断铅AE信号的反射和透射波形。图10为f₀=150kHz时采集的反射和透射波形。

可以看出,分解前的AE信号在试件中波形特

(c) 试件1的透射波形 (c) Transmission waveform collected on the specimen 1

(d) Transmission waveform collected on the specimen 2

Fig.10 The reflection and transmission waveform collected in the experiment with f_0 =150 kHz

征更为混乱(图9),无法观察出加强筋对AE信号 传播的影响,分解后的AE信号波形中可明显观察 出加强筋对AE信号传播过程的影响(图10),这证 明了基于所提模型布置传感器以研究AE信号的 传播特性是可行的。图10中实验与模拟波形之间 存在差异,信号因为频散会有趋向扇形的趋势,这 是由于:①实验中的激励为面源而非点源;②信号 在传感器与圆筒构件接触之间的二次反射造成的。

图 11 为加强筋高度 h=16 mm 时实验与数值模 拟结果对比。可以看出,曲线趋势吻合地很好,这表 明反射和透射系数曲线在可接受的误差范围内得到 了验证,证明了所提多径传播模型适用于研究 AE 信号在带筋结构中的传播特性。

图 11 *h*=16 mm 时实验和数值模拟结果对比

Fig.11 Comparison of experiments and numerical simulations result at h=16 mm

5 结 论

1) 建立了 AE 信号在带筋结构中的多径传播模型,推导了传感器安装位置的约束条件,通过数值模拟和实验,验证了所提出模型的有效性。

2) 归纳了单模态 AE 信号在带筋结构处的传播 规律。AE 信号传播至带筋结构处会产生反射波和 透射波,伴随着模态转换产生新模态。

3)量化地表征了AE信号在带筋结构处的传播 特性。反射系数和透射系数相对于激励频率和加强 筋高度均呈现出非线性特征,激励频率越高,反射和 透射系数对加强筋高度的变化越敏感。

参考文献

[1] 董超.航空发动机故障诊断技术现状及发展研究[J]. 工程建设与设计,2016(15):73-74,77.

DONG Chao. Status and development of fault diagnosis technology for the aeroengine [J]. Construction & De-

sign for Project, 2016(15): 73-74, 77. (in Chinese)

[2] 童国炜,徐华伟,黄林轶,等.基于声发射定位算法的故 障检测技术研究[J].振动、测试与诊断,2022,42(5): 997-1001.

TONG Guowei, XU Huawei, HUANG Linyi, et al. Fault detection monitoring with acoustic emission location method [J]. Journal of Vibration, Measurement & Diagnosis, 2022,42(5):997-1001. (in Chinese)

[3] 李一博,刘圆圆,芮小博.板状材料上加强筋的几何 形状对兰姆波透射特性的影响[J].声学学报,2019, 44(2):231-240.

LI Yibo, LIU Yuanyuan, RUI Xiaobo. Effects of stiffeners on transmission of Lamb waves in palte-like structures [J]. Acta Acustica, 2019, 44(2): 231-240.(in Chinese)

 [4] 刘治东, 庞宝君, 刘刚. 超高速撞击声发射信号在加 筋壁板中传播的模态转换现象研究[J]. 振动与冲击, 2014, 33(21): 114-118.

LIU Zhidong, PANG Baojun, LIU Gang. Hypervelocity impact induced AE wave mode conversion in a plate with vertical stiffeners [J]. Journal of Vibration and Shock, 2014, 33(21): 114-118.(in Chinese)

- [5] ALLEYNE D N, LOWE M J S, CAWLEY P. The reflection of guided waves from circumferential notches in pipes[J]. Journal of Applied Mechanics, 1998, 65(3): 635-641.
- [6] 肖俨衍,卢文秀,褚福磊.声发射信号在不同结构轴中传播特性研究[J].振动与冲击,2014,33(5): 76-81.

XIAO Yanyan, LU Wenxiu, CHU Fulei. Propagation characteristics of acoustic emission in different structural shafts[J]. Journal of Vibration and Shock, 2014, 33(5): 76-81. (in Chinese)

第一作者简介:韩聪,男,1996年2月生, 博士生。主要研究方向为机械状态监 测、信号处理及故障智能诊断。 E-mail: hancongusing@163.com

通信作者简介:杨国安,男,1963年3月 生,博士、教授、博士生导师。主要研究 方向为机械状态监测、信号处理及故障 智能诊断。

E-mail: yangga@mail.buct.edu.cn