DOI:10.16450/j.cnki.issn.1004-6801.2024.02.015

基于深度 SSDAE 网络的刀具磨损状态识别^{*}

郭润兰, 尉卫卫, 王广书, 黄 华 (兰州理工大学机电工程学院 兰州,730050)

摘要 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损阶段状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。

关键词 深度堆叠稀疏自编码网络;变分模态分解;K-最近邻分类器;自适应特征提取;状态识别 中图分类号 TH164;V262.3⁺3

引 言

作为数控机床的"牙齿",刀具对加工件的加工质 量和加工精度起着至关重要的作用。据统计,机床总 停机时间的20%源于刀具失效引起的故障停机^[1]。 因此,需要一种可靠的刀具磨损状态识别方法,提高 刀具加工效率和利用率,减少加工过程中的故障率。

刀具磨损监测依据测量原理可分为直接法和间 接法。间接法具有安装方便、不需要停机检测等优 点,成为刀具磨损状态监测的主流。近年来,深度学 习因具有"端到端"学习特性,在刀具磨损监测领域深 受青睐。Xu等^[3]利用并行卷积神经网络实现了多尺 度特征融合,提出了一种基于深度学习的新方法,提 高了刀具磨损的预测精度。Chen等^[4]将卷积神经网 络与双向长短期记忆网络相结合,建立了一种基于整 体和局部特征的深度学习方法,提高了刀具磨损预测 的准确性。Sun 等^[5]利用加工过程中获得的原始信 号,建立了残差卷积神经网络,实现了加工过程中刀 具状态监测。郭宏等^[6]在深度卷积神经网络中加入注 意力机制,构建了刀具寿命预测模型。吴雪峰等^[7]利 用卷积自动编码器对网络模型进行识别,通过BP算 法结合Adam算法对模型参数进行微调,建立了卷积 神经网络刀具磨损类型智能识别方法,提高了模型识 别率。Li等^[8]提取振动信号和切削力信号的多域特 征,建立了一种多域特征融合的深度可分离卷积神经 网络刀具磨损自动预测方法。上述方法在一定程度 上能够有效解决刀具磨损预测问题,但仍然存在以下 不足:①实际生产环境中存在各种各样的噪声,上述 建模方法均在比较理想的环境中采集刀具磨损信号, 采集的信号具有针对性和特殊性,在强噪声的环境中 将会失效;②在采用时频分析方法进行特征提取时, 因需要人为进行参数的选择,大量参数使得训练过程 复杂并产生冗余的信息,使刀具实际磨损状态与网络 训练磨损状态产生了偏差。

针对以上问题,笔者提出了一种数据驱动下SS-DAEN的刀具磨损状态识别方法,并加入了正则化作 为优化阶段中损失函数的惩罚项,使输出的低维信号 在包含原数据本质特征的同时去除高维信号中的干 扰部分,最终将训练得到的特征用于分类识别,可自 适应提取数据信息,挖掘深层次的数据特征。首先, 利用变分模态(variational modal decomposition,简称 VMD)对原始振动信号进行降噪,采用皮尔逊相关系 数选取最优 IMF,进一步对选取的 IMF 进行特征提 取;其次,应用 SSAEN 对数据集分别进行自适应特征 提取,并将提取后的特征应用 K-最近邻分类器进行 训练与测试;最后,将模型分类精度与 BP 神经网络 (back propagation neural networks,简称 BPNN)、支

^{*} 国家自然科学基金资助项目(52365057,51965037) 收稿日期:2022-08-05;修回日期:2022-12-20

持向量机(support vector machines,简称SVM)、随机 森林(random forest,简称RF)这3种模型精度进行对 比,证明该建模方法的有效性和鲁棒性。

1 刀具磨损状态识别模型及理论

刀具磨损状态识别建模分析方式有基于模型的 建模方法和基于数据驱动的建模方法^[9],其中基于数 据驱动的建模方法是一种高效的分析方法^[10]。笔者 提出了一种数据驱动下深度堆叠稀疏降噪自编码网 络的刀具磨损状态识别方法,模型框架如图1所示。

图 1 模型框架 Fig.1 Model framework

 1)信号处理阶段:采集铣刀3个方向振动信号, 并利用VMD进行降噪处理,采用皮尔逊相关系数
 法选取最优固有模态,然后提取时域、频域特征。

2)状态识别阶段:将提取的特征输入网络,训 练堆叠稀疏自编码网络;进一步丢弃解码器层,使得 隐藏层单元(第1层特征)的激活成为用于训练第2 层编码器的输入,从而产生另一个表示(第1层特 征);将训练得到的特征输入k-最近邻分类器,对刀 具磨损状态进行精确识别。

3)结果分析阶段:将SSDAE网络自适应特征 提取后采用t-SNE降维技术可视化,并将K-最近邻 分类器分类识别精度与BP神经网络、支持向量机 及随机森林分类识别精度作对比,证明所提方法的 可靠性。

1.1 变分模态分解

由于铣削加工过程中利用传感器采集的铣削信 号存在大量的噪声,会对刀具磨损状态分析产生影 响。VMD是一种新的自适应信号处理方法,对非 线性、非平稳信号的处理具有明显的优势。该方法 运算效率高,可克服经验模态分解(empirical mode decomposition,简称 EMD)中的模态混叠问题,实 现信号的准确分离,利用其自身具有的维纳滤波特 性可获得更优的噪声滤除效果,所以采用变分模态 对采集的原始振动信号进行降噪。

VMD可以将非平稳输入信号f分解为k个离散 的模态u_k(k=1,2,...,K),u_k在频率中的带宽都具 有特定的稀疏属性,是一种具有经典维纳滤波、希尔 伯特变换和频率混合这3个概念为基础的变分问题 求解方法。其中:维纳滤波用于信号去噪;希尔伯特 变换用于构造分析信号以获得单边带频谱;频率混 合用来将频谱移到基带。为了获得具有紧凑带宽的 模态,并要求所有模态总和能够重构输入信号f,构 造了以下约束变分问题^[11]

$$\min_{\{u_k\},\{w_k\}} \left\{ \sum_{K=1}^{K} \left\| \partial(t) \left[\left(\partial(t) + \frac{j}{\pi t} \right) u_k(t) e^{jw_k t} \right] \right\|_2^2 \right\} (1)$$

$$\sum_{k=1}^{K} u_k(t) = f \tag{2}$$

其中:f为原始信号; $u_k(t)$ 为模态函数; w_k 为各个模态 中心频率。

为了在高斯白噪声存在的情况下将输入的信号 完全分解为 u_k(t)模态,引入二次惩罚因子∂和拉格朗 日因子λ,将约束问题转化为无约束优化问题,用交替 方向乘子法进行优化求解。二次惩罚项保证信号的 重构精度,而拉格朗日乘子保持约束条件的严格性。

1.2 堆叠稀疏自编码网络

堆叠自编码的基本思想是训练SSDAE网络, 使输出的低维信号在包含原数据本质特征的同时去 除高维信号中的干扰部分,最终将得到的特征进行 分类识别。

1.2.1 3层稀疏自编码网络

自编码网络是一种用于数据降维和特征提取的 无监督深度学习网络。图2所示为3层稀疏自编码 网络,包含1个输入层、1个隐藏层和1个输出层。

数据集 $X = \{x_1, x_2, \dots, x_n\}$ 由 $n \uparrow x$ 数据样本组成,隐藏层节点的激活函数h可以表示为

$$h = f(W^{(1)}x + b^{(1)}) \tag{3}$$

其中:W⁽¹⁾为连接输入层和隐含层的权重;b⁽¹⁾为偏

Fig.2 Three layer sparse auto-encoder network

差;f为一个激活函数,笔者采用 sigmoid 函数。

利用隐含层与输出层之间的连接权值,通过隐 含层对原始数据进行重构

$$\tilde{x} = f(W^{(2)}h + b^{(2)}) \tag{4}$$

其中: \tilde{x} 为重构数据; $W^{(2)}$ 为隐含层与输出层之间的 权值; $b^{(2)}$ 为偏置。

在 SAE 训练中,分别给权重 $W^{(1)}, W^{(2)}$ 和偏置 $b^{(1)}, b^{(2)}$ 一个初值。在初始设置的情况下,执行前向 传递过程计算隐含层的激活,然后在输出层重构数 据。对于数据集中的所有数据 x_i ($i=1,2,\dots,n$)计 算重构误差,以设计SAE 网络的总体成本函数,即 J(W,b)=

$$\frac{1}{n}\sum_{i=1}^{n} \left(\frac{1}{2} \| x_{i} - \tilde{x}_{i} \|^{2}\right) + \frac{\lambda}{2}\sum_{l=1}^{n_{l}-1}\sum_{i=1}^{s_{l}}\sum_{j=1}^{s_{l}+1} \left(W_{ji}^{(l)} \right)^{2}$$
(5)

其中:J(W,b)为优化变量 W 和 b的成本函数; n_l 为 网络的层数;l为层序数; s_l 为网络第l层节点数; $W_{\mu}^{(l)}$ 为连接第l层和第(l+1)层的所有权值向量。

对于 n_i=3的情况,图2所示的网络中使用1个隐 藏层,如果 n>3则包含多个隐藏层。在式(5)中,第1 项是数据重构的误差,最小化该项可以生成准确的数 据表示;第2项是正则化,限制权值的幅度并防止网络 过拟合。参数λ用于调整重构误差和网络权值。

在隐藏层中,数据集上第*j*个节点的平均激活 函数表示为

$$\rho_{j} = \frac{1}{n} \sum h_{j} (x_{i}) \quad (j = 1, 2, \dots, s_{l})$$
(6)

其中:si为网络第1层隐含层的节点数。

稀疏参数ρ用来限制隐含层的激活,第*l*层隐含 层中所有节点的总体约束表示为

$$\sum_{j=1}^{s_{i}} \operatorname{KL}(\rho \| \rho_{j}) = \sum_{j=1}^{s_{i}} \rho \log \frac{\rho}{\rho_{j}} + (1-\rho) \log \frac{(1-\rho)}{(1-\rho_{j})}$$
(7)

其中:KL($\rho \| \rho_j$)为Kullback-Leibler(KL)散度,通 过激活节点来逼近具有该约束的给定稀疏参数。

考虑稀疏约束,将SAE的成本函数重写为

$$J_{\text{sparse}}(W, \mathbf{b}) = J(W, b) + \beta \sum_{j=1}^{s_i} \text{KL}(\rho \| \rho_j) \quad (8)$$

其中:β为调整稀疏惩罚和J(W,b)的参数。

前向传递处理后,按照式(8)计算 SAE 网络的 成本函数。为了最小化成本函数,通过反向传播算 法求解 J_{sparse} 对 W 和 b 的偏导数来更新初始权值和 偏差。参数更新后,得到一个训练好的 SAE 网络。 训练后的 SAE 进行第二轮前向传递,并将隐含层的 激活值作为数据降维后提取的特征。

1.2.2 深层稀疏自编码网络

按照对3层架构稀疏自编码所述的训练方法,将 原始数据集x输入到第1个SAE网络中,即可训练第 1个SAE网络,得到网络权值 $W_1^{(1)}$ 和隐含层输出 h_1 , 下标1表示第1层SAE隐含层,即SAE₁。以 h_1 为输入,训练第2个SAE₂,得到其权值 $W_2^{(1)}$ 和隐含层。

生成一系列的 SAE 网络后,通过叠加这些 SAE 网络的隐藏层,构建一个更深层次的 SAE 网络。 图 3 所示为深层稀疏自编码网络,由1个输入层和3 个隐含层组成。第 k 层和第 (k + 1) 层来自第 k 个 SAE 网络,其中 k= 1,2,3。第 k 个 SAE 的隐含层作 为第 (k + 1) 个 SAE 的输入^[12]。

图 3 深层稀疏自编码网络 Fig.3 Deep sparse auto-encoder network

1.3 皮尔逊相关系数

皮尔逊相关系数是用于度量2个大小为N的变 量A与B之间的相关程度,其值ρ介于-1与1之 间。皮尔逊相关系数的计算如下

$$\rho(A,B) = \frac{1}{N-1} \sum_{i=1}^{N} (\frac{A_i - \mu_A}{\sigma_A}) (\frac{B_i - \mu_B}{\sigma_B})$$
(9)

其中: μ_A , σ_A 和 μ_B , σ_B 分别为A和B的平均值和标 准差。

2 实验验证

为了验证笔者所提刀具磨损状态辨识建模方法

的有效性,利用2010年故障预测与健康管理(prognostics health management,简称PHM)数据竞赛上 公开的高速铣削刀具磨损数据集进行验证^[13],铣削 过程是用一把球头铣刀在长度为108 mm的端面重 复铣削315次完成的。图4为信号采集系统示意图。

图 4 信号采集系统示意图 Fig.4 Schematic diagram of signal acquisition system

铣削实验在 Roders Tech RFM760 立式数控铣 床上进行,铣削工件材料为不锈钢 HRC52,铣削刀 具为三刀球头硬质合金铣刀。实验加工时,每次走 刀进给量为0.001 mm,采样频率为50 kHz。实验设 备和实验加工参数分别如表1,2所示。

利用Kistler三分量测力计分别采集*x*,*y*,*z*方向的铣削力信号,利用Kistler三轴加速度传感器分别

表1 实验设备 Tab.1 Experimental equipment

设备	型号
立式数控机床	Roders Tech RFM760
力传感器	Kistler三分量测力计
振动传感器	Kistler三轴加速度传感器
声发射传感器	Kistler声发射传感器
放大器	Kistler电荷放大器
数采设备	NI DAQ PCI 1200
磨损测量设备	LEICA MZ12
铣削刀具	球头硬质合金铣刀

表2 实验加工参数

Tab.2 Experimental	processing	parameters
--------------------	------------	------------

参数	数值
主轴转速/(r•min ⁻¹)	10 400
进给速度/(mm•min ⁻¹)	1 555
y向切削深度/mm	0.125
z向切削深度/mm	0.2
铣削方式	顺铣
冷却方式	干切
工件材料	不锈钢 HRC52

采集*x*,*y*,*z*方向的振动信号,利用Kistler声发射传 感器采集铣削过程的高频应力波,总共得到7维传 感器信号(*x*,*y*,*z*铣削力信号;*x*,*y*,*z*振动信号;声发 射信号)。公开数据给出了C₁,C₄和C₆这3把刀具的 全寿命周期的磨损,每把刀具走刀315次,利用显微 镜测量刀具3个刃后刀面磨损值,并以三齿刃平均 磨损量作为测量铣刀的实际磨损量。

为了尽可能提取到刀具磨损过程中隐含的信号特征,对每次走刀*x*,*y*,*z*方向的前16000个采样点数据进行特征提取。每次走刀振动信号可提取时域特征14个、频域特征6个,总共提取到时域特征和频域特征20个,3个方向共可获得60个特征,并将其作为特征数据集,具体特征指标如表3所示。

表 3 特征指标 Tab.3 Characteristic index

	ruste onu		
序号	特征名称	序号	特征名称
1	峰峰值	11	峰值指标
2	方差	12	脉冲指标
3	均值	13	裕度指标
4	歪度	14	峭度指标
5	峭度	15	均值频率
6	均方值	16	频谱二阶距
7	方根幅值	17	标准偏差频
8	均方根值	18	峭度频率
9	绝对均值	19	均方根频率
10	波形指标	20	中心频率

3 状态识别

根据刀具磨损的特征,将刀具全寿命周期磨损 的过程划分为3个阶段:初期磨损、中期磨损、后期 磨损。不同磨损阶段的磨损趋势有较大差异:初期 磨损阶段刀具磨损量先急剧后平缓;中期磨损阶段 刀具磨损量一直缓慢增加;后期磨损阶段刀具磨损 缓慢增加后急剧加快。实际磨损量下的刀具磨损曲 线如图5所示。

3个磨损阶段分别用标签1,2,3表示。在实验 过程中,刀具总走刀次数为315次。在本研究中根 据刀具全寿命实际磨损曲线将第1~50次走刀划分 为初期磨损阶段,第51~200次走刀划分为中期磨 损阶段,第201~315次走刀划分为后期磨损阶段, 最终每把刀具的磨损阶段划分如表4所示。

表 4 磨损阶段划分 Tab.4 Division of wear stages

磨损阶段	走刀次数	磨损标签	特征大小
初期磨损	1~50	1	50×60
中期磨损	$51 \sim 200$	2	150×60
后期磨损	$201 \sim 315$	3	115×60

3.1 信号处理

在实验过程中,利用传感器采集的信号多为不 均匀的非平稳信号,以C₄刀具*x*方向振动信号为例, 3个阶段原始信号中含有大量的噪声,对刀具磨损 状态识别产生了较大的干扰。VMD能够自适应处 理信号,利用重构信号获得更加优质的降噪信号,因 此采用VMD将原始振动信号进行降噪处理。

笔者采用中心频率法确定模态分解层数,首先 通过选择模态数 K = 2~10 进行预分解,当相邻模 态的中心频率接近时,被认为过度分解。在这种情 况下,最佳分解层数是中心频率接近时前1项的 K 值。表5为不同 K 值下的中心频率。

表 5 不同 K 值下的中心频率 Tab.5 Center frequency under different K values

K值			中心频率	率/Hz		
1	25.11		_			
2	27.2	2 970.3	_		_	_
3	25.3	1 013.4	3 224.4	_	_	_
4	24.0	861.5	2 988.3	3 950.8	_	_
5	23.6	797.7	2 281.7	3 190.4	3 991.2	_
6	24.2	769.6	1 304.5	2 363.7	3 813.4	3 996.5

由表5可知,K=6时存在2个模态的中心频率 3813.7和3996.5Hz,两者十分接近,因此将K=5 作为VMD分解时的预设数。原始振动信号分解如 图6所示。

因为C₁,C₄和C₆这3把刀具是在相同的条件下 进行实验,采集的振动信号具有相似的特征,所以利 用VMD信号处理时,设置相同的采样点数和分解 层数。采样点数为12000,原始信号分解为5个子 序列,每个子序列对应的频率随着频率的增加从 IMF₁到IMF₅。IMF₁序列的最低频率反映了原始信

号的变化趋势,而IMF₅序列的最高频率反映了原始 信号的变化趋势。

将初期磨损、中期磨损和后期磨损3个阶段振动信 号经过VMD信号分解后,采用皮尔逊相关系数法选取 最优固有模态分量,经过处理后的信号过滤掉了干扰 信号,较原始信号更加平稳均匀。与原始振动信号相 比,初期磨损和中期磨损信号比较稳定,而后期磨损信 号振幅较大。将选取的最优固有模态分量提取时、频 域特征作为堆叠稀疏自编码网络的输入。

3.2 网络结构及参数的设置

将经过选取的最优固有模态分量提取时、频域 特征作为SSDAE网络的输入,训练网络和进行状态辨识。在第1个SAE网络结构中,经过反复测试 将SAE网络结构输入层的节点数设置为1024,即 谱序列的长度。第1层的SAE网络有100个隐含层 节点,输出层的节点数为1000,与输入层的节点数 一致。在第2层SAE网络结构中,输入层的节点数 为100,隐含层的节点数为20,输出层的节点数为 100。将这2个网络结构堆叠在一起便可形成一个 深层次的堆叠稀疏自编码网络,即此网络结构有2 个隐含层,其系数 ρ 均设置为0.01,2个网络模块中 设置调整网络权值的参数 λ 分别为0.07和0.01,稀 疏度参数分别设置为20和15,堆叠稀疏自编码网络 结构参数如表6所示。

表6 网络结构参数 Tab.6 Network structure parameters

类型	节点数	ρ	λ	β
输入层	1 024	—	—	—
隐含层1	100	0.01	0.07	20
隐含层2	20	0.01	0.01	15

3.3 状态可视化

实验数据中,提取C₁,C₄和C₆在3个方向每次走 刀 160 000个振动信号数据,前 80 000个振动信号为 训练集数据,后 80 000个振动信号为测试集数据。 将提取的2个原始信号数据集分别采用VMD降噪, 再利用皮尔逊相关系数法选取最优 IMF,然后将选 取的最优 IMF 分量提取时域、频域特征,分别形成 60×315 数据特征训练集和数据特征测试集。将经 过降噪的数据特征分为2组,一组直接采用t-SNE 降维技术可视化,另一组经过堆叠稀疏自编码自适 应特征提取后,再采用t-SNE降维技术可视化。未 经过堆叠稀疏自编码网络自适应提取特征可视化结 果如图7所示。

Fig.7 Feature extraction visualization

由图7可以看到,未经过堆叠稀疏自编码网络 自适应提取特征的可视化效果较差,3个磨损阶段状 态混叠,未能将刀具磨损3个状态分离。经过堆叠稀 疏自编码网络自适应提取特征的t-SNE降维技术可 视化如图8所示。作为无监督学习的方法,堆叠稀疏 自编码用于降低特征维数,k-最近邻分类器用于识别 刀具磨损状态。堆叠稀疏自编码器包含1个编码器 和1个解码器,是一种无监督的神经网络模型,其增 加了一定的稀疏性限制,以避免因为大量隐藏层神 经元引起的过度拟合,提高了分类任务的性能。

由图8可以看到,刀具初期磨损、中期磨损、后期磨损3个阶段状态均能被很好地分离出来,且3个磨损状态可以很好地聚类,聚类效果明显,这说明堆叠稀疏自

编码网络对刀具磨损状态具有很好的识别效果。用于 表示模型识别结果的混淆矩阵如图9所示。

对 $C_1, C_4 和 C_6 刀具利用笔者所提方法进行状态$ 识别精度混淆矩阵可视化,图9中1~3对应刀具磨损3种不同的状态,纵坐标和横坐标分别表示实际的刀具磨损状态与网络预测的刀具磨损状态。由图9可以看到,振动信号经过降噪,再利用堆叠稀疏自编码网络提取特征,3把刀具的3个状态均能被很好地识别分类,且每个状态的识别精度均在97%以 $上。对于<math>C_1, C_4 和 C_6 刀具, 其x, y 和 z 方向状态识别$ 平均精度分别达到了98%, 97.7%和98.3%。整体来说,笔者所提方法对于任何一把刀具都具有较好的适应性能,能够得到良好的状态识别效果。

3.4 刀具磨损状态识别结果及分析

为了证明笔者所提方法的有效性和鲁棒性,选择常用的分类算法如BPNN,SVM,RF与本研究所提的建模方法作为对比进行实验^[14]。用同样的方法,将经过VMD降噪后的数据采用BPNN,SVM和RF进行状态识别。

分类精度计算公式为

$$A_{\rm cc} = \frac{T_1 + T_2 + T_3}{N} \times 100\% \tag{10}$$

其中: T_1 为正确分类标签1的样本数量, T_2 为正确 分类标签2的样本数量; T_3 为正确分类标签3的样 本数量;N为样本总数量。

实验结果表明,上述建模方法与本研究所提方法 均能很好地识别刀具磨损状态,精度对比如表7所示。

	Tab.7	Accuracy	compariso	n
建模方法	C_1	C_4	C_6	平均识别精度
BPNN	0.889 0	0.869 8	0.904 7	0.887 8
SVM	0.898 4	0.873 0	0.892 1	0.887 8
RF	0.927 0	0.854 0	0.930 2	0.903 7
SSAEN	0.980 0	0.977 0	0.983 0	0.980 0

表7 精度对比 b.7 Accuracy comparison

相比于 BP神经网络, C₁, C₄和 C₆刀具状态识别 精度分别提高了9.10%, 10.72%和7.83%。相比于 支持向量机, C₁, C₄和 C₆刀具状态识别精度分别提 高了8.16%, 10.4%和9.09%。相比于模糊神经网 络, C₁, C₄和 C₆刀具状态识别精度分别提高了5.3%, 12.3%和5.28%。总体而言, 相比于 BP神经网络、 支持向量机和随机森林, 本研究所提方法平均识别 精度分别提高了9.22%, 9.22%和7.63%。其中: BP神经网络与支持向量机平均识别精度均为 88.78%; 随机森林平均识别精度为90.37%; 笔者所 提堆叠稀疏自编码网络平均识别精度高达98%。 综上所述, 笔者所提方法在实际生产和加工过程中 具有更好的实用性和可靠性。

4 结 论

1)采用VMD对原始振动信号进行降噪,降低 了非平稳振动信号的复杂度和非平稳性,产生了与 刀具磨损具有强相关性的数据降噪样本,具有鲁棒 性,对实际加工生产有指导意义。

2) 构建了 SSDAE 网络, 不仅克服了因样本数 据过少、训练网络不具有泛化性的缺点, 还可以从大 量的信号中挖掘更深层次的数据特征, 避免了人为 提取特征过程中信号丢失的问题。实验证明,本研究所提方法刀具磨损状态识别精度高达98%,与常用刀具磨损状态识别方法相比,状态识别精度高出 至少7.63%。

3)所提方法仍然受限于单一工况下的状态识别, 在今后的研究过程中,应当考虑在不同工况下的刀具 磨损状态识别,提高模型的实际利用率和泛化性能。

参考文献

- [1] 刘辉,张超勇,戴稳.基于堆叠稀疏去噪自动编码网络 与多隐层反向传播神经网络的铣刀磨损预测模型[J]. 计算机集成制造系统,2021,27(10):2801-2812.
 LIU Hui, ZHANG Chaoyong, DAI Wen. Milling tool wear prediction model based on stacked sparse denoising automatic codingnetwork and multi-hidden layer back propagation neural network[J]. Computer Integrated Manufacturing Systems, 2021, 27(10): 2801-2812. (in Chinese)
- [2] 谢振龙,岳彩旭,刘献礼,等.基于 EMD-SVM 的钛合 金铣削过程刀具磨损监测[J].振动、测试与诊断, 2022,42(5):988-996.

XIE Zhenlong, YUE Caixu, LIU Xianli, et al. EMD-SVM based tool wear monitoring for titanium alloy milling process[J].Journal of Vibration, Measurement & Diagnosis, 2022, 42(5): 988-996.(in Chinese)

- [3] XU X W, WANG J W, ZHONG B F, et al. Deep learning-based tool wear prediction and its application for machining process using multi-scale feature fusion and channel attention mechanism[J]. Measurement, 2021,177:109254.
- [4] CHEN Y W, ZENG Q G, ZHAO D Y, et al. Tool wear predicti-on using convolutional bidirectional LSTM networks[J]. The Journal of Supercomputing, 2022, 78(12):810-832.
- [5] SUN H B, ZHANG J D, MO R, et al. In-process tool condition forecasting based on a deep learning method[J].
 Robotics and Computer-Integrated Manufacturing, 2020, 64:101924.
- [6] 郭宏,任必聪,闫献国,等.基于深度卷积神经网络的刀 具寿命动态预测研究[J].控制与决策,2022,37(8): 2119-2126.

GUO Hong, REN Bicong, YAN Xianguo, et al. Research on dynamic prediction of tool life based on deep convolutional neural networks[J].Control and Decision, 2022,37(8):2119-2126.(in Chinese)

[7] 吴雪峰,刘亚辉,毕淞泽.基于卷积神经网络刀具 磨损类型的智能识别[J].计算机集成制造系统,2020, 26(10):2762-2771. WU Xuefeng,LIU Yahui,BI Songze.Intelligent recognition of tool wear types based on convolutional neural networks [J]. Computer Integrated Manufacturing Systems,2020,26(10):2762-2771.(in Chinese)

- [8] LI G F, WANG Y B, WANG J L, et al. Tool wear predictiction based on multidomain feature fusion by attention-based depth-wise separable convolutional neural network in manufacturing[J/OL]. [2022-08-03]. https://doi.org/10.1007/s00170-021-08119-7
- [9] TAO Z R, AN Q L, LIU G Y, et al. A novel method for tool condition monitoring based on long short-term memory and hidden Markov model hybrid framework in highspeed milling Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105:3165-3182.
- [10] SUN C, MA M, ZHAO Z B, et al. Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing [J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 2416-2425.
- [11] CHANG H, GAO F, LI Y, et al. An optimized VMD method for predicting milling cutter wear using vibration signal[J]. Machines, 2022, 10(7):548-566.
- [12] 徐帆,常建华,刘秉刚,等.基于VMD的激光雷达回波 信号去 噪方法研究[J].激光与红外,2018,48(11): 1443-1448.

XU Fan, CHANG Jianhua, LIU Binggang, et al. Research on VMD-based LIDAR echo signal denoising method[J]. Laser & Infrared, 2018, 48(11): 1443-1448. (in Chinese)

- [13] QIN Y Y, LIU X L, YUE C X, et al. Tool wear identification and prediction method based on stack sparse self-coding network[J]. Journal of Manufacturing Systems, 2023, 68:72-84.
- [14] 黄华,姚嘉靖,薛文虎,等.基于多域特征联合分布适配的刀具磨损状态识别[J].计算机集成制造系统,2022, 28(16):2419-2429.

HUANG Hua, YAO Jiajing, XUE Wenhu, et al. Tool wear status recognition based on multi-domain feature joint distribution [J]. Computer Integrated Manufacturing Systems, 2022, 28(16): 2419-2429. (in Chinese)

第一作者简介:郭润兰,女,1963年6月 生,教授、硕士生导师。主要研究方向为 现代制造技术、故障诊断理论与应用。 E-mail:llggrl@126.com

通信作者简介:黄华,男,1978年8月生,博 士、教授、博士生导师。主要研究方向为机 械结构健康监测、数控技术与装备。 E-mail:hh318872@126.com