DOI:10.16450/j.cnki.issn.1004-6801.2022.04.010

有限元修正吊杆端部效应的振动频率法*

赵新铭1, 石鑫炜1, 姜 波1, 王 永2, 王加勇2, 潘建伍1

(1.南京航空航天大学民航学院 南京,210016)

(2.中国电建市政建设集团有限公司 天津,300384)

摘要 为提高振动频率法对两端带连接杆的吊杆力测量精度,提出了基于有限元的频率法索力修正方法。考虑了连接杆长度、刚度引起的吊杆基频误差,并由此分析其对频率法计算吊杆力的影响。利用ABAQUS建立吊杆振动有限元模型,变化连接杆与吊杆的长度比、刚度比,通过PYTHON对有限元结果进行拟合,引入了索力调整系数。采用所提方法和传统振动频率法及文献[6]方法对潇河大桥的8根吊杆力进行计算,结果表明:该方法可以有效减小索力误差,提高振动频率法索力计算精度。

关键词 振动频率; 吊杆; 张力; 有限元; 端部效应 中图分类号 TU997: TH113

引言

系杆拱桥属于高次超静定结构,吊杆力对结构 的影响很大,吊杆力的变化会导致主梁和拱肋的内 力及线形发生改变。在吊杆的施工张拉过程中须准 确地对吊杆力进行控制,确保系杆拱桥结构的安全 及施工控制[1]的顺利进行。目前,测量吊杆力的方 法主要分为压力传感器法、频率法[24]、油压表读数 法和电磁法,频率法是现阶段桥梁工程应用中最为 广泛、便捷、经济的方法。频率法是利用测得的振动 频率来计算吊杆力,对于跨径较大、拉索较长的斜拉 桥,拉索的边界条件[5-7]对振动法测索力的精度影响 较小,将测得的频率代入拉索振动方程计算索力时 往往比较准确。对于系杆拱桥,由于其吊杆较短,不 可忽略自身抗弯刚度等[8-9]对索力的影响。此外,当 吊杆两端具有较长的连接杆时,连接杆的长度、刚度 的变化都会对其振动频率产生较大的影响[10]。此 时,不能将吊杆简化为等容重、等刚度的计算模 型[11-12],需重新将吊杆构建为三段式的模型[13]。笔 者通过改变连接杆的刚度和长度,即吊杆与连接杆 的刚度比、长度比,利用ABAQUS建立吊杆振动有 限元模型,分别在不同吊杆预应力的作用下研究了 它们对吊杆振动频率的影响。最后,考虑长度比、刚 度比引起的索力误差,利用PYTHON对有限元结 果进行非线性拟合,对频率法索力计算公式进行修 正,给出了索力的快速计算方法,并结合实际工程,

验证了该方法的有效性。

1 有限元模型结果与分析

利用 ABAQUS 建立两端铰接的吊杆振动计算模型,如图 1 所示。其中: L_i 为吊杆中间段长度; L_d 为连接杆长度; E_i L_i 为吊杆中间段抗弯刚度; E_d L_d 为连接杆抗弯刚度。

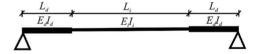


图1 吊杆实际计算模型

Fig.1 Actual calculation model of suspender

考虑到吊杆较短及抗弯刚度对其自振频率的影响,吊杆全长采用 wire 梁单元模拟。吊杆中间段和连接杆之间绑定连接,取吊杆总长为 30 m,吊杆中间段刚度为定值,基本参数如表 1 所示。 F_e 表示吊杆预应力,采用降温法来模拟,即保持吊杆在降温时产生的应变等同于其在预应力下的应变。设定 2 个变量 $I_i=2L_d/L_i$, $I_e=E_dI_d/E_iI_i$,其中 $:I_i$ 为连接杆与中间段的长度比,在模拟不同长度比时取吊杆总长 30 m不变; I_e 为刚度比,变化连接杆的刚度来实现不同的刚度比;f为吊杆基频。模拟不同 F_e 情况下f随 I_i 变化时,取 $I_e=10$;模拟不同 F_e 情况下f随 I_e 变化时,取 $I_e=0.15$ 。图 2 为吊杆有限元模型。

^{*} 国家重点研发计划重点专项资助项目(2020YFC1511900);中国电力建设股份有限公司科技资助项目(KJ-2019-032) 收稿日期;2020-10-11;修回日期;2020-12-30

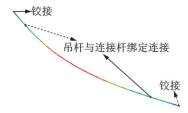


图 2 吊杆有限元模型

Fig.2 Finite element method modle of suspender

表1 吊杆中间段基本参数

Tab.1 Basic parameters of middle section of suspender

弹性模量/(N•m ⁻²)	面积/mm²	每延米重/(kg•m ⁻¹)				
2×10 ¹¹	4 775	37.27				

图 3 为基频随长度比和索力的变化曲线。图 3 (a)为不同索力下基频随长度比的变化曲线图。从图 中可以看出,在同一索力下,吊杆基频随长度比递增, 呈线性增长趋势。当索力为0时,曲线斜率为0,基频 对长度比的变化不敏感;但随着索力的提高,基频随 长度比递增加快。这表明索力越大,长度比对基频的 影响越显著。当索力增至3000kN时,吊杆基频从 4.72 Hz增至5.21 Hz,提高了10.32%。图3(b)为不 同长度比下基频随索力的变化曲线图。从图中可以 看出,在同一长度比下,吊杆基频随着索力递增,增速 在减小,表明索力越大,提高索力对基频的影响越小。

图 4 为基频随刚度比和索力的变化曲线。图 4 (a)为不同索力下基频随刚度比的变化曲线图。从

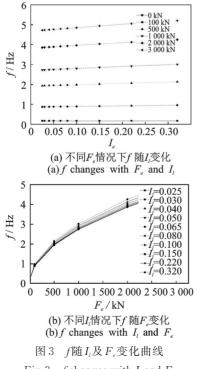


Fig.3 f changes with I_t and F_e

图中可以看出,在同一索力下,刚度比从1增至5时, 吊杆基频随刚度比递增较快,该段内吊杆基频对刚 度比变化敏感;刚度比增至5后,曲线趋向平缓。索 力为0时,曲线平直,随着索力的提高,刚度比在1至 5变化时,吊杆基频随刚度比递增加快,表明索力越 大,刚度比对基频的影响越显著。索力提高到 3 000 kN 后, 吊杆基频从 4.67 Hz 增至 5.01 Hz, 提高 了7.28%。图4(b)为不同刚度比下基频随索力的变 化曲线图。从图中可以看出, 当刚度比大于5时, 曲 线几乎重合,表明刚度比的变化不影响索力对基频 的效果,这是因为吊杆刚度主要由预应力提供,自身 刚度贡献很小。

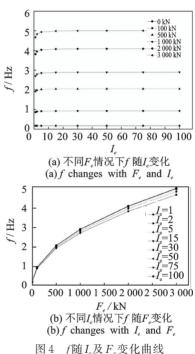


Fig. 4 f changes with I_e and F_e

从图5可以看出,长度比会影响刚度比对基频 的效果。长度比越大,刚度比对基频影响越显著,基 频随刚度比变化幅度越大。当刚度比小于5时,其 变化会显著影响长度比对基频的效果,刚度比大于

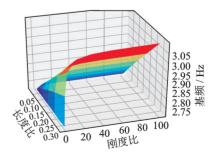


图 5 F_e =1 000 kN 时 f 随 I_e 及 I_l 的变化

Fig. 5 f changes with I_e and I_t when $F_e = 1000 \text{ kN}$

5时,影响不大。变化长度比和刚度比,基频从2.71 增至3.09,提高了14.02%,这将对频率法计算索力产生很大误差,需修正长度比、刚度比带来的影响。

2 频率法索力计算公式的修正

2.1 频率法简介

根据弦振理论可得拉索的振动方程为

$$EI\frac{\partial^4 y}{\partial^4 x} + m\frac{\partial^2 y}{\partial^2 t} - T\frac{\partial^2 y}{\partial^2 x} = 0 \tag{1}$$

其中:EI为拉索的抗弯刚度;y为拉索的振动位移;T为拉索索力;m为拉索单位长度质量。

可见式(1)只有在假设拉索材质均匀时,其抗弯 刚度和单位长度质量才能保持不变。通过分离变量 及假定两端铰接的边界条件下,易求出索力与第 n 阶自振频率的关系为

$$T_{n} = \frac{4mL^{2} f_{n}^{2}}{n^{2}} - \frac{n^{2} \pi^{2} EI}{L^{2}}$$
 (2)

其中:L为拉索计算索长; f_n 为拉索的第n阶自振频率; T_n 为第n阶频率计算得到的索力。

由于系杆拱桥吊杆较短,不能忽略抗弯刚度对其自振频率的影响。同时由于连接杆的存在,连接杆长度及刚度的变化会对吊杆自振频率产生影响。在不考虑刚度比及长度比的情况下,将测得的吊杆自振频率代入式(2)计算索力时,结果会与吊杆实际受力偏差。显然,若考虑实际端部性质对式(1)进行求解是十分困难的,推导方程特解过程极其繁琐,不适宜在实际工程中直接应用。因此,笔者采取有限单元法,建立吊杆振动有限元模型,通过PYTHON对有限元结果进行拟合,提出了考虑长度比、刚度比的频率法索力计算修正方法,完善了两端带连接杆的频率法索力计算公式。

2.2 长度比和刚度比对频率法索力计算式的修正

首先,利用式(2)求出 F_e =1000kN时各长度比、 刚度比下的计算索力值 F_e ,采用基频计算,如表2所示。

表 2 F_e =1 000 kN时 F_i 随 I_e 及 I_i 的变化

Tab.2 F_i changes with I_e and I_t when F_e =1 000 kN

	刚度比													
	2		5		15		30		50		75		100	
	F_i	偏差/	$F_{\scriptscriptstyle i}/$	偏差/	$F_{i}/$	偏差/	F_{i}	偏差/	$F_{i}/$	偏差/	F_i	偏差/	F_i	偏差/
	kN	%	kN	%	kN	%	kN	%	kN	%	kN	%	kN	%
0.025	990.91	-0.91	998.29	-0.17	1 001.73	0.17	1 002.54	0.25	1 002.92	0.29	1 003.05	0.31	1 003.12	0.31
0.030	993.24	-0.68	1 002.11	0.21	1 006.21	0.62	1 007.16	0.72	1 007.63	0.76	1 007.82	0.78	1 007.94	0.79
0.040	997.92	-0.21	1 009.74	0.97	1 015.27	1.53	1 016.63	1.66	1 017.11	1.71	1 017.41	1.74	1 017.56	1.76
0.050	1 002.02	0.22	1 016.89	1.69	1 023.77	2.38	1 025.48	2.55	1 026.15	2.61	1 026.52	2.65	1 026.67	2.67
0.065	1 009.59	0.96	1 028.89	2.89	1 037.98	3.80	1 040.22	4.02	1 041.12	4.11	1 041.57	4.16	1 041.79	4.18
0.080	1 016.23	1.62	1 039.92	3.99	1 051.08	5.11	1 053.86	5.39	1 054.99	5.51	1 055.59	5.56	1 055.82	5.58
0.100	1 024.66	2.47	1 054.62	5.46	1 068.88	6.89	1 072.44	7.24	1 073.89	7.39	1 074.57	7.46	1 074.95	7.49
0.150	1 047.26	4.73	1 092.64	9.26	1 114.65	11.47	1 119.77	11.98	1 122.01	12.21	1 123.14	12.31	1 123.64	12.36
0.220	1 074.81	7.48	1 142.44	14.24	1 175.84	17.58	1 184.31	18.43	1 187.75	18.77	1 189.56	18.95	1 190.38	19.04
0.320	1 113.49	11.35	1 213.35	21.34	1 264.72	26.47	1 278.13	27.81	1 283.49	28.35	1 286.23	28.62	1 287.65	28.76

由表 2 可知,当长度比、刚度比很小时,理论索力和计算索力偏差很小,表明有限元模拟的准确性。但其偏差随着长度比、刚度比递增,最大偏差可达 28.76%,表明长度比的递增将带来更大的偏差。采用式(2)计算索力时将吊杆简化为等容重、等刚度的模型,当长度比、刚度比较大时,实际模型与简

化模型出入较大,会导致其计算结果与吊杆实际受力偏差严重,将给桥梁施工控制与安全带来危害。由于无法直接将长度比、刚度比代入式(2)计算其对索力的影响,笔者利用 PYTHON 对有限元结果进行非线性拟合,提出了考虑长度比、刚度比的索力误差方程为

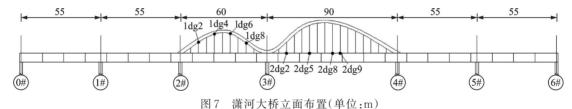
其中:F,,为索力误差。

索力误差方程以刚度比为变量分为3部分,2 \leq $I_e \leq 5$ 时,曲面非线性拟合为Guass2D函数;5 \leq $I_e \leq 100$ 时,曲面拟合为两个plane函数。3段函数的 R^2 都大于0.99,相关性好。

基于式(2)计算出索力后,可将吊杆实际刚度 比、长度比依据式(3)计算出索力误差,并由此引入 索力调整系数,修正后索力为

$$\begin{cases} \rho = 1/(1 + F_w) \\ F_v = \rho F_i \end{cases} \tag{4}$$

其中: ρ 为索力调整系数;F,为修正后索力。


3 工程应用

潇河大桥为连续梁拱组合体系桥,吊杆结构形式如图6所示,吊杆编号如图7所示。其中,在60m和90m跨分别增设异形钢拱肋,主梁为双幅带风嘴的单箱多室钢箱梁结构,双幅箱梁之间以横梁连接,中心

Fig.6 Structure type of suspender

横梁高为3.2 m。拱肋采用六边形断面,顶、底板宽度及六边形内角度为定值,截面宽度、高度随拱高变化。两跨拱肋共设置24根吊杆,吊杆两端具有连接杆,吊杆中间段在连接杆内锚固,连接杆与主梁及拱肋销栓式连接。分别采用本研究修正方法、文献[6]索力计算公式及传统振动频率法对8根吊杆力进行计算。实测索力采用油压法测量,利用DASP进行频谱分析得到吊杆基频,吊杆参数及结果如表3所示。

四, 11/10 五四 4百(十四,111)

Fig.7 Elevation of Xiaohe Bridge (unit:m) 表 3 3种索力计算方法结果对比

Tab.3 Comparison of the results of three methods for calculating cable force

吊杆参数							振动频率法		文献[6]	本研	开究修正方法	
编号	刚度比	长度比	线密度/(kg•m	-1) 总长/m	实测索力/kN	基频/Hz	索力/kN	误差/%	误差/%	调整系数	索力/kN	误差/%
1dg2	24.61	0.46	20.92	8.47	183.31	6.46	251.19	37.03	3.98	0.71	178.35	-2.71
1dg4	24.61	0.26	20.92	13.17	231.92	4.39	279.57	20.54	4.14	0.82	229.25	-1.15
1dg6	24.61	0.28	20.92	13.59	261.51	4.52	316.99	21.22	4.21	0.81	254.82	-2.56
1dg8	24.61	0.48	20.92	9.07	235.81	6.72	310.87	31.83	3.84	0.70	229.99	-2.38
2dg2	35.23	0.38	29.73	9.81	376.73	6.68	512.05	35.92	3.36	0.75	384.04	1.94
2dg5	35.23	0.24	29.73	19.16	814.64	4.76	987.48	21.22	3.86	0.83	819.61	0.61
2dg8	35.23	0.17	29.73	20.03	603.91	3.81	690.84	14.39	3.13	0.88	606.23	0.38
2dg9	35.23	0.19	29.73	18.81	589.27	3.99	670.75	13.83	3.34	0.87	578.92	-1.76

由表 3 可见,采用传统振动频率法计算索力时,由于长度比、刚度比的存在,索力误差较大,最高达 37.03%。由于本桥吊杆的两端与梁拱采用销栓式连接,吊杆纵向振动时,其边界条件更偏向于铰接。文献[6]假定吊杆为等容重模型,忽略了连接杆对吊杆振动约束的影响,使计算得到的频率比值 Z_n偏小,导致其固结边界条件下的索力计算公式误差偏大。采用本研究修正方法计算后,索力误差有所减

小,最高为一2.71%。总长度较大且长度比较小的吊杆修正精度普遍更高,可能是因为该类型的吊杆与有限元模型更类似。考虑长度比、刚度比后的索力计算方法能提高索力测量精度,减小误差。

4 结 论

1) 在同一模拟预应力下,吊杆基频、计算索力随

长度比递增,增速随刚度比递增,并趋向定值。提高 预应力能增大长度比对吊杆基频,计算索力的影响。

- 2) 在同一模拟预应力下,吊杆基频、计算索力 随刚度比递增,但趋向平缓。提高预应力时,刚度比 对吊杆基频、计算索力的影响变化不大。
- 3)根据笔者提出的方法,对同类桥型的振动频率法计算索力进行修正,具有良好的精度。因为没有考虑吊杆实际边界条件和实际索力下的修正公式,所以也有局限性。

参 考 文 献

- [1] 郑平伟,钟继卫,汪正兴.大跨度桥梁的施工控制[J]. 桥梁建设,2009(S2):19-22. ZHENG Pingwei, ZHONG Jiwei, WANG Zhengxing.
 - Construction control of long span bridges [J]. Bridge Construction, 2009(S2):19-22. (in Chinese)
- [2] 张卓杰,王荣辉,甄晓霞,等.平行钢绞线斜拉索索力测试方法评价[J].桥梁建设,2016,46(2):42-47. ZHANG Zhuojie, WANG Ronghui, ZHEN Xiaoxia, et al. Evaluation of measurement methods for tension of parallel steel strand stay cab les[J]. Bridge Construction,2016,46(2):42-47. (in Chinese)
- [3] 方志,汪建群,颜江平.基于频率法的拉索及吊杆张力测试[J].振动与冲击,2007(9):78-82,171-172. FANG Zhi, WANG Jianqun, YAN Jiangping. The tension measurement of cables and supenders with frequency method[J].Journal of Vibration and Shock,2007(9):78-82,171-172. (in Chinese)
- [4] 魏建东,刘山洪.基于拉索静态线形的索力测定[J].工程力学,2003(3):104-107.
 WEI Jiandong, LIU Shanhong. Tension calculation of cable by its static profile [J]. Engineering Mechanics, 2003(3):104-107.(in Chinese)
- [5] 吉伯海,程苗,傅中秋,等.基于振动频率法的斜拉桥索力测试影响因素[J].中南大学学报(自然科学版), 2015,46(7):2620-2625.

 JI Bohai, CHENG Miao, FU Zhongqiu, et al. Influential factors in vable force measurement of cable-sayed bridges based on vibration frequency method [J]. Journal of Central South University (Science and Technology), 2015,46(7):2620-2625.(in Chinese)
- [6] 唐盛华,方志,杨索.考虑边界条件的频率法测索力实用公式[J].湖南大学学报(自然科学版),2012,39(8):7-13.

 TANG Shenghua, FANG Zhi, YANG Suo. Practical formula for the estimation of cable te-nsion in frequency method considering the effects of boundary conditions [J]. Journal of Hunan University (Natural Sciences),

- 2012,39 (8):7-13.(in Chinese)
- [7] 何容,何伟,陈淮,等.复合边界条件下基于能量法吊索张 力实用公式[J].振动、测试与诊断,2013,33(2):187-191. HE Rong,HE Wei,CHEN Huai, et al. Practical formula for hanger tension under combined boundary conditions based on energy method [J]. Journal of Vibration, Measurement & Diagnosis,2013,33(2):187-191.(in Chinese)
- [8] 何容,燕朋朋,何伟,等.考虑温度等多因素影响的拱桥 吊杆张力识别[J].振动、测试与诊断,2020,40(5): 873-880
 - HE Rong, YAN Pengpeng, HE Wei, et al. Tension measurement of arch bridge suspender considering environmental temperature and other factors [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40 (5): 873-880.(in Chinese)
- [9] PARK K S, SEONG T R, NOH M H. Feasibility study on tension estimation technique for hanger cables using the FE model-based system identification method [J]. Mathematical Problems Engineering, 2015(2):1-12.
- [10] 何伟,陈淮,王博,等.复杂边界条件下基于频率法的吊杆张力测定研究[J].土木工程学报,2012,45(3):93-98. HE Wei, CHEN Huai, WANG Bo, et al. Study of suspender tension measurement based on frequency method with complex boundary conditions[J]. China Civil Engineering Journal,2012,45(3):93-98.(in Chinese)
- [11] 陈彦江,程建旗,闫维明,等.基于参数灵敏度分析的吊杆索力识别[J].振动与冲击,2011,30(7):256-260. CHEN Yanjiang, CHENG Jianqi, YAN Weiming, et al. Cable force detection based on parametric sensitivity analysis [J]. Journal of Vibration and Shock, 2011, 30(7):256-260.(in Chinese)
- [12] GANNON S L, KEVIN F M, ARASH E Z. Determining time variation of cable tension forces in suspended bridges using time-frequency analysis [J]. Advances in Civil Engineering, 2018(3):1-13.
- [13] 孙永明,李惠.端部性质对频率法测量竖直拉索索力影响分析[J].工程力学,2013,30(8):10-17. SUN Yongming,LI Hui.Effect of extreme properties of vertical cable on the cable force measurement by frequency-based method [J]. Engineering Mechanics, 2013,30(8):10-17.(in Chinese)

第一作者简介:赵新铭,男,1962年12月生,教授。主要研究方向为混凝土结构基本理论及其应用等。曾发表《南京江北地区PHC桩竖向承载力可靠度分析》(《岩土力学》2008年第29卷第3期)等论文。

E-mail: xmzhao@nuaa.edu.cn