考虑自愈现象的轴承多阶段退化剩余寿命预测
作者:
作者单位:

厦门大学航空航天学院 厦门,361102

通讯作者:

罗华耿,男,1963年2月生,博士、教授、博士生导师。主要研究方向为故障诊断、信号处理和结构动力学。E-mail: luoh@xmu.edu.cn

中图分类号:

TH17;TH165.3;TP183

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    轴承服役过程存在“自愈”等非线性退化现象且缺乏训练寿命标签,限制了智能轴承寿命预测方法在实际工程中的应用。针对此问题,提出一种多阶段退化标签构建(multi-stage degradation label construction, 简称MDLC)方法。首先,运用深度自编码网络与高斯分布的自适应3σ法则,根据振动信号统计特征识别轴承的初始退化点;其次,利用自下而上分割算法,基于均方根特征值曲线划分轴承退化阶段并分段拟合,构建多阶段退化剩余寿命标签;然后,搭建长短时记忆人工神经网络的寿命预测模型,以有监督的方式训练并优化该模型;最后,利用XJTU-SY滚动轴承加速寿命试验数据集测试所提出的方法,并与经典方法进行了对比。结果表明,该方法不仅能够准确识别轴承初始退化点,且剩余寿命预测误差更小,验证了其有效性与准确性。

    参考文献
    [1] LEI Y G, LI N P, GUO L, et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
    [2] 张金豹, 邹天刚, 王敏, 等. 滚动轴承剩余使用寿命预测综述[J]. 机械科学与技术, 2023, 42(1): 1-23.ZHANG Jinbao, ZOU Tiangang, WANG Min, et al. Review on remaining useful life prediction of rolling bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 1-23.(in Chinese)
    [3] 张秀华, 刘怀举, 朱才朝, 等. 基于数据驱动的零部件疲劳寿命预测研究现状与发展趋势[J]. 机械传动, 2021, 45(10): 1-14.ZHANG Xiuhua, LIU Huaiju, ZHU Caichao, et al. Current situation and developing trend of fatigue life prediction of components based on data-driven[J]. Journal of Mechanical Transmission, 2021, 45(10): 1-14.(in Chinese)
    [4] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.PENG Yu, LIU Datong. Data-driven prognostics and health management: a review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495.(in Chinese)
    [5] 康守强, 邢颖怡, 王玉静, 等. 基于无监督深度模型迁移的滚动轴承寿命预测方法[J]. 自动化学报, 2023, 49(12): 2627-2638.KANG Shouqiang, XING Yingyi, WANG Yujing, et al. Rolling bearing life prediction based on unsupervised deep model transfer[J]. Acta Automatica Sinica, 2023, 49(12): 2627-2638.(in Chinese)
    [6] 王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动、测试与诊断, 2021, 41(3): 439-446.WANG Yujing, LI Shaopeng, KANG Shouqiang, et al. Method of predicting remaining useful life of rolling bearing combining CNN and LSTM[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(3): 439-446.(in Chinese)
    [7] PEEL L. Data driven prognostics using a Kalman filter ensemble of neural network models[C]∥2008 International Conference on Prognostics and Health Management. Denver, CO, USA: IEEE, 2008: 1-6.
    [8] 吕明珠,苏晓明,刘世勋,等. 风力机轴承实时剩余寿命预测新方法[J]. 振动、测试与诊断, 2021, 41(1):157-163.Mingzhu Lü, SU Xiaoming, LIU Shixun, et al. Novel method of real-time remaining useful life prediction for wind turbine bearings[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(1): 157-163. (in Chinese)
    [9] 张龙龙. 基于多健康状态评估的滚动轴承剩余寿命预测方法研究[D]. 成都: 电子科技大学, 2014.
    [10] LI H R, LI Y L, YU H. A novel health indicator based on cointegration for rolling bearings' run-to-failure process[J]. Sensors, 2019, 19(9): 2151.
    [11] 高彩霞, 吴彤, 付子义. 线性回归与EEMD的滚动轴承剩余寿命预测[J]. 机械科学与技术, 2019, 38(10): 1589-1597.GAO Caixia, WU Tong, FU Ziyi. Remaining useful life prediction for rolling bearings based on linear regression and EEMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(10): 1589-1597.(in Chinese)
    [12] LIN H L, LEI Z H, WEN G R, et al. A novel approach of label construction for predicting remaining useful life of machinery[J]. Shock and Vibration, 2021, 2021(1): 6806319.
    [13] LI N P, LEI Y G, LIN J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773.
    [14] WANG Y, PENG Y Z, ZI Y A, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem[J]. IEEE Transactions on Industrial Informatics, 2016, 12(3): 924-932.
    [15] PINEDO-SANCHEZ L A, MERCADO-RAVELL D A, CARBALLO-MONSIVAIS C A. Vibration analysis in bearings for failure prevention using CNN[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(12): 628.
    [16] ATAMURADOV V, MEDJAHER K, CAMCI F, et al. Feature selection and fault-severity classification-based machine health assessment methodology for point machine sliding-chair degradation[J]. Quality and Reliability Engineering International, 2019, 35(4): 1081-1099.
    [17] KEOGH E, CHU S, HART D, et al. Segmenting time series: a survey and novel approach[M]∥MARK L, ABRAHAM K, HORST B. Data Mining in Time Series Databases. Singapore, Hackensack, NJ: World Scientific, 2004: 1-21.
    [18] EL-THALJI I, JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2015(60/61): 252-272.
    [19] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4/5): 1066-1090.
    [20] WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412.
    [21] 雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6.LEI Yaguo, HAN Tianyu, WANG Biao, et al. XJTU-SY rolling element bearing accelerated life test datasets: a tutorial[J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6.(in Chinese)
    [22] 刘路路. 基于特征融合和LSTM的滚动轴承剩余寿命预测[D]. 成都: 电子科技大学, 2021.
    [23] 许艳雷, 邱明, 李军星, 等. 基于SKF-KF-Bayes的滚动轴承剩余使用寿命预测方法[J]. 振动与冲击, 2021, 40(19): 26-31, 40.XU Yanlei, QIU Ming, LI Junxing, et al. Remaining useful life prediction method of rolling bearing based on SKF-KF-Bayes[J]. Journal of Vibration and Shock, 2021, 40(19): 26-31, 40. (in Chinese)
    [24] WANG F T, LIU X F, DENG G, et al. Remaining life prediction method for rolling bearing based on the long short-term memory network[J]. Neural Processing Letters, 2019, 50(3): 2437-2454.
    [25] ROHANI BASTAMI A, VAHID S. A comprehensive evaluation of the effect of defect size in rolling element bearings on the statistical features of the vibration signal[J]. Mechanical Systems and Signal Processing, 2021, 151: 107334.
    [26] XIA M, LI T, SHU T X, et al. A two-stage approach for the remaining useful life prediction of bearings using deep neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3703-3711.
    [27] JIN X H, SUN Y, QUE Z J, et al. Anomaly detection and fault prognosis for bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(9): 2046-2054.
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-20
  • 最后修改日期:2022-09-04
  • 在线发布日期: 2025-04-28
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司
请使用 Firefox、Chrome、IE10、IE11、360极速模式、搜狗极速模式、QQ极速模式等浏览器,其他浏览器不建议使用!