基于CS-BBO优化SVM的汽轮机转子故障诊断
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK267; TH17

基金项目:

(国家自然科学基金资助项目(51576036);吉林省科技发展计划资助项目(20100506)


Fault Diagnosis for Steam Turbine Rotor by Using Support Vector Machine Based on CS-BBO Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高汽轮机转子故障诊断的准确率和识别效率,提出了一种基于混沌的生物地理学优化算法(biogeography based optimization with chaos, 简称CS-BBO)和支持向量机(support vector machine, 简称SVM)相结合的故障诊断方法。首先,将混沌理论引入到生物地理学优化算法(biogeographybased optimization, 简称BBO)中,得到CS-BBO算法;其次,通过CS-BBO算法优化SVM得到诊断模型的最优参数,增强SVM的学习能力和泛化能力;最后,通过ZT-3转子试验台模拟汽轮机转子故障,利用得到的4种状态下的试验数据验证优化模型的有效性。结果表明:CS-BBO算法优化SVM的模型可以准确、高效地对汽轮机转子进行故障诊断;与BBO算法优化SVM模型相比,该方法的故障诊断准确率和识别效率更高。

    Abstract:

    To improve the accuracy and efficiency of turbine rotor fault diagnosis, a new method of fault diagnosis based on the biogeography-based optimization with chaos (CS-BBO) and support vector machine (SVM) is introduced. Firstly, the chaos theory is introduced into the biogeography-based optimization algorithm (BBO), the CS-BBO algorithm is obtained. Then, the optimal parameters of the SVM diagnostic model are obtained through the CS-BBO algorithm, and optimization model enhances the learning ability and generalization ability of SVM. Finally, the validity of the optimization model is verified by the experimental data of 4 kinds of states from ZT-3 rotor test bench to simulate the turbine rotor fault. The results show that the optimized model of SVM obtained by CS-BBO algorithm can be used to diagnose the fault of the steam turbine rotor accurately and efficiently. Compared with the optimized SVM model, which is obtained by the biogeography-based optimization algorithm, the accuracy and efficiency of fault diagnosis of this method is higher.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-07-04
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司