利用倒阶次谱和经验模态分解的轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮箱升降速过程中振动信号非平稳的特点,将阶次跟踪分析与希尔波特黄变换 技术相结合,提出了基于倒阶次谱和经验模态分解的滚动轴承故障诊断方法。首先,对齿轮 箱 加速时测得的瞬态信号进行时域采样,对时域信号进行等角度重采样,转化为角域伪平稳信 号,然后对角域信号进行经验模态分解。最后,对包含轴承故障信息的高频固有模态函数进 行倒 阶次谱分析,就可以提取轴承的故障特征。通过对轴承内圈和外圈故障信号的分析表明,该方 法能准确识别轴承的故障类型和部位。

    Abstract:

    In order to process the nonstationar y vibration signals during speedup and speeddown of a gearbox, the order cepst r um technique and the empirical mode decomposition(EMD) methods were presented to diagnose the rolling bearing. This method combined the order tracking technique with the HilbertHuang transform. First , the vibration signal was sampled at a constant time increment and resampled a t a constant angle increment. Therefore, the transient time domain signal was changed into pseudostatio nary angle domain one. Se cond, the signal in angledomain was analyzed with EMD. At last, the high fre q uency intrinsic mode function(IMF) component, which contained the fault informa tion of the bearing, was studied with the order cepstrum analysis and the fault character of the bearing was extra cted. The experimental results show that combining the order cepstrum analysis w ith the EMD techni que can effectively determine the positions and types of bearing faults.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司