改进的主成分分析方法在磁浮系统中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决磁悬浮列车中多传感器系统的故障诊断和信号重构,提出了一种改进的主成分 分析方法。该算法能够改进传统主成分分析方法在有相位偏移信号的系统中处理效果不佳的 缺 陷。算法理论证明过程也给出了实施改进方法的具体步骤。最后,在磁浮列车传感器 信号系统中,基于改进前后的两种主成分分析方法,采用平方预报误差原则,分传感器有 故障和 无故障两种情况,把故障的检测结果进行了对比。算例结果表明,改进后的算法能明显提高故 障的检测概率,降低检测误差。

    Abstract:

    An improved principle components analysis method(PCA) was proposed for fault dia gn osis and faulty signal reconstruction in a maglev train, which had multiple s e nsors and redundant signals. In systems with phase shifting signals, the main co mponents acquired by the traditional PCA method were not optimal, so the process i ng effects were not convincing. To overcome this flaw, an improved idea was put fo rward and followed by a strict demonstration in theory. What’s more, the practi ca l realization process of the idea was also acquired in the demonstration proces s . Finally, adopting the squared prediction error principle, the traditional and improved PCA methods were both used in the maglev system fault detection. Whethe r the system has faulty signals or not, the conclusion is that the improved PCA m ethod can increase the probability of faulty sensor identification and decrease the error.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司