轴心轨迹自动识别及其在旋机诊断中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于Zernike不变矩特征和神经网络分类器的轴心轨迹自动识别方法。通过对原始Zernike矩特征进行二次提取和处理,获得了对轴心轨迹识别更为敏感的矩特征量,降低了后续神经网络分类器设计的难度。仿真研究表明,基于Zernike矩的轴心轨迹识别方法,其识别精度优于常用的几何矩方法。将所提方法应用于汽轮发电机组和高速离心压缩机组轴心轨迹的自动识别,并结合频谱能量分布特征进行故障诊断,结果表明,引入轴心轨迹特征可以有效地提高旋转机械故障诊断的精度。

    Abstract:

    This paper presents an automatic recognition method of the shaftorbit based on the Zernike moments and neural network.By re-extracting and reprocessing the original Zernike moments, the more sensitive momentf eatures for the shaft orbit identification were obtained, which simplified the designing of the succeeding neural network classifier. The simulation result shows that the accuracy of the Zernike moment based method is superior to the Hu′s geometric moment invariants based one. The proposed method was applied to automatically recognize the shaft orbit of a turbo-generator and a high-speed centrifugal air compressor, and the recognition results were incorporated with the spectrume nergy distribution features to diagnose the faults. It is shown that the accuracy of fault diagnosis is improved effectively by considering the orbit features,and the method is feasible.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司