基于遗传小波神经网络的双余度电机故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的BP神经网络在双余度无刷直流电机故障诊断算法中存在收敛速度慢和容易陷入局部最小的缺点,在对无刷直流电机常见故障深入分析的基础上,着重研究5种故障特性,提出1种故障诊断新方法。有针对性地根据统计学方法提取电机运行数据作为故障征兆。采用3层小波神经网络构成前向网络结构。针对传统误差反向传播(BP) 算法选择参数和网络拓扑结构依据的不足,用遗传算法作为网络的样本学习算法,采用染色体编码对小波基函数主要参数和网络结构参数进行优化。通过仿真试验和在微小型水下航行器上的应用表明,该算法具备较好的故障识别能力

    Abstract:

    Aimed at defects of the traditional BP neural network algorithm which had a slow convergencespeed and was easy to get in a local minimum in application tofault diagnosis algorithm of dual-redundancy system, this paper analyzed common faults of brushless DC motor(BLDCM), and mainly studied the character of five types of faults, and proposed a new approach for the fault diagnosis. According to the method of statistics, targeted data was picked up to be the symptom of faults. The front-network consisted of three layers of wavelet neural network. Aimed at defects of the traditional BP algorithm which was less of evidence in configuration of the parameter and topology of neural network, a genetic algorithm was adopted as the sample training algorithm. The chromosome coding was adopted to optimize the parameter of wavelet function and the parameter of neural network′. By means of simulation tests and applications to a microminiature autonomous underwater vehide(AUV), it is confirmed that the wavelet neural network method based on genetic algorithms has anexcellent fault-recognition ability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司