大型铝电解槽针振信号深层特征提取方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提取大型铝电解槽针振信号的深层特征以便精确识别槽况,收集了典型的针振信号,利用小波除噪技术进行预处理,分别用现代谱估计算法对信号功率谱进行估计和小波包算法提取信号能量特征向量。对两种算法进行比较的结果表明,现代谱估计算法简单,物理意义明确,能很好地提取平稳性好的针振信号的深层特征,而小波包分解算法则能很好地提取平稳性差、突变信息多的针振信号的深层特征。

    Abstract:

    Typical noise signals of aluminum reduction cells were collected to e xtract the indepth features thus to determine the operating conditions exactly . The wavelet method was employed to denoise in preprocessing, and the Burg metho d an d a wavelet packet were used to estimate power spectral density and extract powe r characteristic vectors respectively, and the two methods were compared. The re sults show that the Burg method is simpler and has definite physical meaning, wh ich performs well in extracting indepth features of stationary noise signals, w hile the wavelet packet method does well in extracting indepth features of non  stationary noise signals with much transient information. A combination of the t wo methods can determine operating conditions of aluminum reduction cells accura tely.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司