运用EMD和GASVM的齿轮故障特征提取与选择
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对齿轮故障特征提取,首先将齿轮箱振动信号进行经验模态分解,得到一组固有模态函数。计算各固有模态函数的能量和矩阵的奇异值,采用Shannon 熵和Renyi熵度量能量和奇异值分布,构成原始特征子集。再采用遗传算法和最小二乘支持向量机的Wrapper方法选择最优特征子集。该方法能够利用较少的特征参数集准确判别齿轮故障,提高了齿轮故障诊断的精度与效率。

    Abstract:

    In order to extract the gear fault features, firstly, the gearbox vibr ation signal was decomposed as intrinsic model functions (IMF) by using the empi rical mode decomposition (EMD) method. The energy of every IMF and the singular value of the IMF matrix were chosen as features. The Shannon and Renyi entropy o f the energy and singular value distribution were also extracted. Secondly, a wr apper feature selection method employing the genetic algorithm and the least squ are support vector machine (LSSVM) was used to search the optimal feature subs e ts for the gear fault diagnosis. The results demonstrate that the proposed appro ach can detect the gear faults by only using a small feature set with high accur acy and efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司