特征选择与支持向量机参数同步优化研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了免疫多向二进制粒子群优化算法。基于该算法实现了特征选择与支持向量机参数的同步优化,克服了单独优化特征或单独优化支持向量机参数的缺陷。既解决了特征与分类器不匹配带来的诊断能力下降,又提高了故障诊断精度与搜索速度。

    Abstract:

    An algorithm named immune multidirection binary particle swarm optim i zation (IMBPSO) algorithm was presented and applied to optimize feature selectio n and parameters of support vector machine (SVM) simultaneously. It overcomes th e degression of diagnosis ability resulting from unmatch of the features and the classifier parameters and improves the diagnosis precision and search speed. An example of engine fault classification demonstrates the effectiveness the method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司