基于模拟退火与LSSVM的轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    运用模拟退火与最小二乘支持向量机(least square support vector machine,简称LSSVM) 轴承的故障诊断法,是在得到较优的λ和σ参数的同时进行特征选择获取显著特征子集。为验证所提方法的有效性,将4种运行状态、5种转速、2类载荷条件下测得的轴承振动信号作为研究样本,提取信号的52个特征。试验结果表明,该法对轴承故障分类的准确率较高,可有效用于旋转机械的状态监控。

    Abstract:

    A fault diagnosis method based on the least square support vector mach ines (LSSVM) and the simulated annealing algorithm was proposed. Better paramete rs of the regularizing variable λ and the kernel width σ were obtained by usin g the simulated annealing algorithm, and the sensitive subset of features was de termined simultaneously. To verify the effectiveness of the method, roller beari ngs were tested under four operating conditions, five different shaft speeds and two load levels, and 52 features were extracted from the bearing vibration sign als. The results show that the method has a higher accuracy of classification fo r bearings fault than other methods, and it is a promising approach to condition monitoring of rotating machinery.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司