基于振动谱图像识别的智能故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以滚动轴承为对象,提出了基于Hilbert包络分析和双谱分析的组合方法来提取振动信号的故障频率特征,进而生成双谱灰度图,利用双谱灰度图的灰度共生矩阵及其特征统计量来表征谱图特征。对该特征统计量进行主成分分析而得到的主分量,作为故障模式识别的输入向量。将用于故障模式分类的人工免疫网络分类算法,通过人工免 疫网络对训练抗原进行学习形成记忆抗体网络,并计算检验抗原与记忆抗体的亲和力,按 照正面选择的原理实现分类。在故障特征信号干扰严重的情况下,取得了较好的诊断准确率, 验证了基于振动谱图识别的智能故障诊断方法的

    Abstract:

    The Hilbert envelope analysis and bispectrum analysis were used to ex tract frequency components of vibration signals of a rolling bearing, and the gr ay level cooccurrence matrix (GLCM) and its characteristic statistics from bi s pectrum spectrogram were obtained. Then the characteristic statistics were furth er treated by the principal component analysis (PCA) to get principal components as the input vectors for fault pattern recognition.In an artificial immune netw ork (AIN) system, the principal components were used as the antigens. A modified artificial immune network classification algorithm (AINCA) was introduced and u sed in the bearing fault diagnosis. Through the optimization of the fault antige ns,the memory antibody nets formed and the fault classification was realized by the positive selection principle based on their affinity. The result indicates t hat the modified AINCA has a high accuracy of classification.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司