悬吊结构体系摆振响应测试及非线性误差修正
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决悬吊结构多种模式摆振运动状态的量测问题,采用基于加速度测量原理的倾角传 感器,通过理论分析建立了由传感器加速度信号提取平动运动模式下结构摆角增益系数的计算公式,解决了结构平动运动模式的量测问题,并且经过非线性误差修正后可以提高测量精度。对于结构转动(或回转)运动模式,类似于平动摆振运动控制系统在转动中由于质量振 子的线性位移与结构摆角速度耦合影响而导致控制失效的问题,此时基于加速度原理的倾角传感器也将失效,而需要采用陀螺仪测量回转运动摆振角速度,再通过积分计算结构摆角。最后,对悬吊结构体系在两种运动模式下的摆振运动状态测量进行了试验验证,结果充〖JP1〗分证明了本文所提方法的有效性和可行性。此外,针对悬吊结构复杂的多模式平转耦联摆振状态测量,提出需要将倾角传感器与陀螺仪相结合的监测策略。

    Abstract:

    In order to solve the state measurement problem of pendulum vibratio n of a suspended mass system in multimotion modes, the inclinometer sensors base d on acceleration measuring principle are introduced and the formulation of the g ain coefficients from the signal of sensor acceleration to structural pendulum a ngle is established through the theoretical analysis, which can be used to solve the measurement of planar motion of the system. Furthermore, after nonlinear mo difications, the measurement results can reach a high precision. While, similar to the motion control problem, the accelerationbased inclinometer sensor will l ose its effectiveness owing to the gyrus motion mode of the suspended structure, and the gyroscope is needed to measure the angular velocity, then the pendulum angle is acquired through mathematical integration calculations. At last, the tw o motion modes of the suspended mass system are both measured through experiment al verifications, the results of which soundly prove the feasibility and accurac y of the measuring method proposed in this paper. In addition, for the complicat ed planar and rotary coupled motion modes, the inclinometer and the gyroscope sh ould be integrated together to measure the pendulum motion state of the suspende d mass system.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-12-22
  • 最后修改日期:2009-03-06
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司