柴油机低温起动工况的传感器在线诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应用径向基函数网络(RBFNN)和正交最小二乘算法(OLS),提出了一套针对柴油机低温起动的传感器在线故障诊断策略。以传感器采样值作为RBFNN的输入,传感器故障作为输出,进行了柴油机低温起动的传感器在线故障诊断训练与学习。利用RBFNN诊断策略,进行了柴油机 低温起动的电流传感器、电压传感器和转速传感器的硬故障(短路、断路、值不变)和软故障(线性度、灵敏度、重复性等误差)的在线诊断试验。结果表明:传感器硬故障的诊断率达到956%;最大线性度误差为0 5%,最大灵敏度误差为0 8%,最大重复性误差为01%,满足国Ⅳ排放的OBD管理标准。

    Abstract:

    Based on the radial based function neural network (RBFNN) and the orth o gonal least square (OLS) algorithm, an online diagnostic strategy for sensor f a ult detection of the cold start diesel engine is proposed. The strategy for sens or fault detection of the cold start diesel engine is realized by using the sens or sampling data as input of the RBFNN and the sensor faults as the output of th e RBFNN to train the network. The online diagnostic tests for the sensor hardw a re malfunctions such as short circuit, open circuit and the fixed value of the e lectric current sensor, the voltage sensor and the rotate speed sensor, and also the software malfunctions such as the errors from linearity, the sensitivity an d the repeatability are made on the cold start diesel engine by using the RBFNN and the OLS algorithms. The results show that the diagnostic accuracy can reach 956%, the maximal linearity error is 05%, the maximal sensitivity error is 08%, and the maximal repeatability error is 01%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-02-24
  • 最后修改日期:2008-05-03
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司