应用EMD-AR谱提取柴油机曲轴轴承故障特征
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于经验模式分解(EMD)和AR(auto regressive)谱技术相结合的曲轴轴承 磨损故障诊断的新方法。利用EMD方法分解发动机非稳态加速振动信号,得到一系列平稳的本 征模式函数(IMF)分量,对占信号能量主要部分的前5阶IMF分量进行AR谱估计,分析各IMF分量的AR谱频带能量,提取能够反映曲轴轴承磨损故障的IMF分量的AR谱频带能量作为故障特征参 数。试验时设置6组不同的振动传感器放置部位和4组不同的采集器触发转速,并利用本文提 出的方法分析采集到的发动机非稳态振动信号。分析结果表明,基于EMD及AR谱技术提取得到 的故障特征能够准确反映曲轴轴承的磨损状态,且当发动机转速高于1300r/min,传感器放置于缸体与油底结合部右侧时,提取的故障特征最明显。

    Abstract:

    A new way of extracting fault features from the crankshaft bearing fault of diesel engine by using the empirical mode decomposition (EMD) method and auto regressive (AR) model spectrum analysis technology is proposed. By using EMD the unstable vibration signal of the engine at the stage of speedup is decomp osed into a series of stable intrinsic mode functions (IMF). The first 5 orders of IMFs taking up the main parts of the origin signal are analyzed by the AR mode l spectrum, the frequency band power of the AR model spectrum of IMFs is calcula ted and the power which reflects the fault of crankshaft bearings is extracted as the feature of the crankshaft bearing fault. 6 vibrating sensors at different locations and data acquisition unit running at 4 different speeds of the engine are set, and the acquired vibration signal is analyzed by the proposed method. When the sensor is located on the right joint between cylinder and oil panats peeds of engine greater than 1300r/min, the extracted features are highlighted. The result shows that the extracted fault features can exactly reflect the fault of crankshaft bearing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-12-15
  • 最后修改日期:2009-03-17
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司