往复压缩机气阀早期故障的双演化遗传聚类检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对往复压缩机气阀早期故障的检测数据分布复杂,常规方法难以有效检测的问题,提出一种双演化遗传聚类检测算法。该算法引入测地线距离作为数据间关系测度,并将个体编码为代表各类别的典型样本序号的排列。基于生物进化系统的中自组织、自学习及自适应等 复杂性,设计了相应的幂律选择算子、双演化交叉算子和种群的自适应更新策略来完成故障 数据的聚类检测。将该算法用于两级往复压缩机气阀早期故障检测,试验结果表明,双演化 遗传聚类算法。在对气阀早期故障的识别率上明显优于常用的K均值算法和遗传聚类算法,可 应用到具有复杂数据分布的机电系统故障检测。

    Abstract:

    In consideration of the problem that the general clustering algorithm is ineffec tive in detection of reciprocating compressor early fault data with complex shap e clusters, a novel double evolution genetic clustering algorithm is put forward in this work. The new approach employs geodesic distance to measure the similar ity of data samples, and encodes each chromosome as a sequence of real integer n umbers representing the cluster representatives. Based on the selforganizing, selflearning and selfadapting of evolution, a power law selecting operator, double evolution crossover operator and selfadapting generation strategy are d esigned to execute the clustering detection of fault data. The results of the ex periments on early fault detection of reciprocating compressor’s valve leakage show that the new algorithm is efficient and effective. Its performance of recog nition is better than that of the Kmeans algorithm and generic genetic cluster ing algorithm, and can be adopted for detecting machine fault with complex data distribution.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-11-06
  • 最后修改日期:2009-12-31
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司