采用镜像延拓和RBF神经网络处理EMD中端点效应
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在分析经验模态分解端点效应出现原因的基础上,采用镜像延拓法和径向基函数神经网络预测法对端点效应进行了研究,并对一组数值仿真信号和12层钢筋混凝土框架模型振动台试验实测得到的加速度信号进行了边界处理和经验模态分解。算例结果表明,这两种方法基于边界两端预测数据,都可以有效抑制端点效应对分析信号的影响 ,提高经验模态分解的效果。另外,对于复杂信号仅采用径向 基函数神经网络延拓原始信号,对抑制端点效应的效果不很明显,而对复杂信号经滤波后先利用径向基函数神经网络预测、再利用镜像延拓进行处理,则可以明显抑制端点效应的影响。

    Abstract:

    Empirical mode decomposition (EMD) is a new method to process nonlinea r and nonstationary signals. However, there is some trouble with its endeffect due to using spline interpolation to get its upper and lower envelopes. Based o n a brief discussion to the cause of the endeffect, the mirror extension and r adial basis function (RBF) neural network prediction are adopted to suppress the endeffect in EMD. A simulated signal and a signal recorded from the shaking table test of a 12stroey reinforced concrete frame model are processed by the two methods and further decomposed by EMD. The results indicate that the two met hods predict and extend the data according to the boundary information of the si gnal and can suppress the endeffect effectively, thus improving the decomposition r e sults to a certain extent. In addition, for a complex signal, such as a measured acceleration signal of a structure, only extending the signal by RBF neural net work is not effective in suppression of the endeffect. But applying mirror ext ension after filtering the signal and predicting the filtered signal by RBF neur al network can suppress the endeffect obviously.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-02-17
  • 最后修改日期:2009-04-14
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司