运用HHT边际谱的柴油机故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于希尔伯特黄变换(HilbertHuang transformation,简称HHT)边际谱的柴 油机故障诊断方法。在3110柴油机上进行了气门间隙变化和 断油等故障的模拟试验,测取了柴油机在断油工况和气门间隙异常工况下的气缸盖 振动信号,并采用抽区间采样分析法对缸盖振动信号进行了时域特性分析。通过对故障敏感 段信号的HHT边际谱分析,得出了在各工况下信号 随时间和频率变化的精确表达,并以边际谱的最大峰值作为特征向量,采用马氏距离(Mahala no bis距离)进行分类,判断柴油机的工作状态和故障类型。试验分析表明,该方法即使在小样本 的情况下也能有效地识别柴油机气门间隙变化和断油故障。

    Abstract:

    A new method of fault diagnosis of diesel engine based on HHT marginal spectrum is put forward in this paper. A lot of diesel engine faults were simulated and investigated on the diesel engine type 3110, and surface vib ratio n signals were obtained under both fault and normal conditions. Interval analysis method was used to analysis the property of the signals in th e time domain. The H HT(HilbertHuang transformation) marginal spectrum method was used to analyze t he segments of the signal which are sensitive to the faults, and an exact expre ssion of the variatioin of the signal with time and frequency was obtained. The maximum peak value of the marginal s pectrum was adopted as the feature vector and served as the input param eter of Ma halanobis distance classifier to classify working condition of the diesel engine . The results show that the proposed approach can classify working condition of the diesel engine accurately and effectively even under conditons of a small sample size.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-06
  • 最后修改日期:2009-06-04
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司