正交迭代局部Fisher判别转子故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过局部加权邻接矩阵重新定义类内散度和类间散度,建立局部Fisher判别函数,在特征值 求解过程中以正交迭代方式找出最优投影向量,得到故障诊断模型。该方法能保证数据降 维 过程中的重构误差最小,并可直接运用故障诊断模型识别增量数据,避免了一般流形学习 模式识别时对动态增量数据需要重建模型的问题。转子故障诊断试验表明,对于多传感器振 动特征融合信号,相对其他流形学习算法,正交局部Fisher判别(orthogonl locally Fisher discriminant,简称OLFD)的故障诊断效果最好。

    Abstract:

    A method of fault diagnosis by using orthogonal iterative local fisher discriminant was proposed to better recognize faults of rotor system. Divergence s within and between classes were both redefined on base of local weighted adjac ency matrix, and local fisher discriminant function was established. Then optima l projection vector was found by iterative orthogonal approach and fault diagnos is model was achieved which can be directly used to recognize patterns of increm ental data. The method guarantees minimum reconstruction errors during dimension ality reduction and be free from model reconstruction on the dynamic incremental data in general manifold learning methods. The experimental result shows that t he orthogonal local fisher discriminant (OLFD) algorithm is superior to other ma nifold learning algorithms in rotor fault diagnoses.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-08-10
  • 最后修改日期:2010-11-16
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司