Elman神经网络的红外地球敏感器实时故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以卫星姿控系统实时仿真信号 为诊断依据,设计故障检测Elman神经网络及故障判决,实现系统正常与非正常状态的区分并 获取故障发生时刻。提出了基于改进梯度更新策略的故障隔离Elman神经网络方法,对故障时 刻点之后时域信号进行故障模式匹配,进一步实现系统故障隔离。运用某卫星姿态控制系统 进行在线故障诊断试验的结果表明,本文方法具有较好的实时有效性、输出耦合诊断性能、 时域信号诊断泛化性和网络收敛性。

    Abstract:

    An online fault detecting and isolating (FDI) method was proposed for f ault diagnosis of Infrared Earth Sensor. The Elman neural network was employed d ue to its capability of processing timevarying signals in real time. For the s a ke of simplicity, two Elman neural networks were developed for fault detecting ( FD) and fault isolating (FI) respectively. For FD, an FD Elman neural network an d corresponding logic judgment were designed to identify normal and faulty state s; the output of FD was the moment when a fault occurred. For FI, a novel gradie nt updating strategy was introduced in FI Elman neural network which does faulty pattern matching and conducts FI. Simulation results demonstrate that the FDI s trategy is real time, convergent available for output coupling, general with tim evarying signals. The proposed FDI can avoid modeling, so it is suitable for o nline FDI of satellite attitude control system (SACS).

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-08-06
  • 最后修改日期:2010-09-29
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司