小波包去器械与改进HHT的微弱信号特征提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提取机械设备早期故障微弱信号特征频率,在对信号进行小波包降噪后,利用改进Hilb ertHuang变换(HilbertHuang transform,简称HHT)进行特征提取,通过经验模态分解(em pirical mode decomposition,简称EMD)得到若干个固有模态函数(intrinsic mode functio n,简称IMF)后,利用IMF与EMD分解前信号的 相关系数作为判断标准,剔除分解中产生的多余低频IMF,选取有效IMF集进行边际谱分析。 改进HHT不仅可消除多余IMF的影响,还可节省Matlab计算内存,提高运算速度。

    Abstract:

    In order to extract the fault feature frequency of weak signal, an impr ove HilbertHuang transform (HHT) method combining with the wavelet packet tran s form is put forward in this study. After performing wavelet packet denoising, th e empirical mode decomposition (EMD) was used to decompose the signal into a num ber of intrinsic mode functions (IMFs). This process always generated some undes irable IMFs at lowfrequency regions. The method for removing the undesirable I M Fs was proposed by using the correlation coefficient of the IMF and the undecomp osed signal as a criterion, and the IMFs whose correlation coefficient was bigge r than the set value were chosen as the effective data for the future Hilbert ma rginal spectrum analysis. The improved HHT can not only avoid the impact of unde sirable IMFs but also save memory space and operation time. Experimental results show that the proposed method is effective in fault feature extraction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-11-13
  • 最后修改日期:2010-02-03
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司