小样本条件下的机械噪声源识别方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在小样本条件下识别水下航行器机械噪声源,通常运用直推式置信机(transductive confide nce machine,简称TCM)与K近邻法(Knearest neighbors,简称KNN)相结合的TCMKN N算法。但在高置信水平下,用这种方法对测试样本进行预测分类的能力不强。通过改进奇异 测量方法,提出了改进的TCMKNN算法。经舱段模型试验表明,该算法能有效地提高预测分类 的正确率和预测的置信度,且分类性能优于常用的BP和RBF神经网络等模式识别方法。

    Abstract:

    Identification of mechanical noise sources of underwater vehicle can be regarded as a pattern recognition problem using small sample. To solve the prob lem, an algorithm integrating the transductive confidence machine (TCM) with the Knearest neighbors (KNN) algorithm was usually employed, which is named the T C MKNN algorithm. But its classification ability is not satisfactory at the high confidence level. Therefore, an improved TCMIKNN algorithm is put forward by i m proving singular value measure method. The results of an experiment on a cabin m odel show that the improved TCMKNN algorithm can increase the classification a c curacy as well as the confidence level, and is superior to usual pattern recogni tion methods such as the BP and RBF artificial neural networks.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-12-18
  • 最后修改日期:2010-02-04
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司