递归定量分析在离心泵故障诊断中的运用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了准确诊断离心泵的振动故障,针对振动信号的非平稳特征,提出了一种基于递归定 量分析的离心泵振动故障诊断方法。采用递归定量分析(recurrence quantification a nalysis,简称RQA)方法提取离心泵振动信号的非线性特征参数,由这些特征参数构成特征向 量,并以此作为改进Elman神经网络的输入,对神经网络进行训练,建立了离心泵运行状态分类 器,用以诊断离心泵的不同状态。试验结果表明,递归定量分析与Elman神经网络相结合的 方法可以准确诊断离心泵的振动故障。

    Abstract:

    Abstract In order to diagnosis vibration fault of centrifugal pump accurately, aiming at the non-stationary characteristics of the vibration signals of centrifugal pump, a fault diagnosis method based on recurrence quantification analysis was put forward. First of all, the recurrence quantification analysis( RQA) method was used to extracted nonlinear characteristic parameter of the vibration signals, and the feature vector was generated by RQA nonlinear characteristic parameter. The feature vectors were employed as the input samples to train a modified Elman neural network, and then the running state classifier of the centrifugal pump was set up. The experimental results show that proposed method is effective for centrifugal pump fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-08-22
  • 最后修改日期:2009-11-16
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司