基于支持向量机的张弦梁损伤识别试验
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对单榀张弦梁的索力损失和腹杆损伤进行了试验研究。对拉索加载不同程度的预应力来模拟索的预应力损失,利用环境脉动和冲击激励,通过采用Fourier变换或小波变换求得 索的频率来计算施加在索上的预应力值。试验结果表明,该方法可以有效地监测 索 预应力。对张弦梁的上部腹杆进行了环境脉动下的损伤试验,对不同的杆件沿径向进行相应 程度的截面切割用以模拟不同程度的损伤状态。对加速度样本进行小波包分解得到特征向 量,利用支持向量机对特征向量进行损伤分类,验证了支持向量机方法用于损失识别的有效性 。当支持向量机和主成分分析结合后,试验的损伤识别效果有明显的提高。

    Abstract:

    The cable prestressing loss and web members damage experiment of a bea m string structure was carried out. Different prestressing forces were exerted o n the cable to simulate cable prestressing loss, the prestressing forces were ca lculated by the frequencies which were solved by Fourier transform or wavelet tr ansform under impulse excitation. Test results show this method is accurate and convenient. The damage cases of web members on the beam were tested to validate the efficiency of wavelet support vector machine method. Wavelet packet decompos ition was applied to the structural response signals under ambient vibration, fe ature vectors were obtained by feature extraction method with “energydamage s t ate”. The feature vectors were used for training and classification as the inpu ts of the compact support vector machine. The structural damage position and deg ree can be identified and classified, and the test result is highly accurate esp ecially combined with principle component analysis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-03-09
  • 最后修改日期:2009-06-04
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司