基于混沌理论与SVM的内燃机振动信号趋势预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对内燃机振动信号信噪比低且呈非线性、非平稳的特性,提出将经验模态分解(empirical mode decomposition,简称EMD)相空间重构理论与支持向量机(support vector machine, 简称SVM)相结合,实现内燃机 振动监测数据的建模及预测。首先,将含噪声的振动信号经验模式分解,去掉主要干扰因素所对应 的固有模态函数(intrinsic mode function,简称IMF)分量,再将剩余IMF分量进行重构,得 到去噪声后振动信号时间序列;然后应用混沌理论, 选择合适的嵌入维数和时间延迟对去噪后的振动信号时间序列进行相空间重构;最后采用SVM对其进行建模预测,并与径向基函数(radial basis function,简称RBF)神经网络的预测结果进行比较。试验数据表明,该方 法能够预测内燃机振动信号的变化趋势,性能优于传统的分析方法,具有一定的工程实用性。

    Abstract:

    For the low signal to noise ratio, nonlinear and nonstationary ch ar acteristics of engine vibration signals, a modeling and forecasting technique is put forward by integrating the empirical mode decomposition(EMD) denoising, t h e theory of phase space reconstruction and support vector machine(SVM). Firstly, the vibration signals were decomposed by using the EMD method and the intrinsic mode function (IMF) components related to main interference factors were elimin ated. Then, the true vibration signal was obtained by reconstructing the remaini ng IMF components, and the timeseries embedding space about the denoised vibra t ion signals were rebuilt after the embedding dimension and time delay had been d etermined based on the theory of chaos. Finally, the modeling prediction was car ried out by SVM and compared with radialbasisfunction (RBF) neural network. Th e experimental results show that the proposed method can predict the trend of en gine vibration signals and its performance surpasses the traditional techniques and has better project practicability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-04-16
  • 最后修改日期:2009-07-12
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司