一种自适应小波消噪方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了消除噪声对被测信号的干扰,有效提取信号中的有用成分,根据信号和噪声小波变换系数的不同特性,在分析了传统阈 值方法局限性的基础上,提出了一种自适应小波消噪方法。该方法首先对被测信号进行小波分解,并改进了阈值量化公式,使其具有能量分布自适应的降噪能力;然后,利用类别方差作为 判别依据,选取使得类别方差最大和类内方差最小的阈值作为最佳的阈值,并根据每层分解后 的小波系数进行自适应的阈值确定;最后,对信号进行重构,通过分解、阈值处理和重构 等过程实现小波消噪。仿真信号和轴承故障诊断的实例结果表明该方法可在强噪声背景下消除噪声干扰,有效提取出滚动轴承的早期故障频率。

    Abstract:

    In order to suppress the noise interference and extract the useful fau lt feature from the measured signal, an adaptive wavelet denoising method was p roposed according to the inverse characteristics of useful signal and noise in d ifferent wavelet scales and the limitation of the traditional threshold methods. Firstly, the measured fault signal was decomposed by discrete wavelet transform . Then, the threshold formula was improved to make this method has energy distri bution adaptive denoising ability. At every decomposition level, an optimal ad a ptive threshold, which made the class variance be the maximal one and the varian ce within clusters be the minimal one, was chosen according to the class varianc e. Lastly, the noise in the signal was denoised by wavelet reconstruction. The method was applied to simulation experiment and bearing fault diagnosis experime nt. The results reveal that this method considerably improves the capability of feature extraction and incipient fault diagnosis for rolling bearing in strong n oise backgrounds.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-06-01
  • 最后修改日期:2009-09-23
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司