基于小波包样本熵的滚动轴承故障特征提取
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将样本熵引入故障诊断领域,讨论了样本熵的性能和计算参数的选择。结合小波包分解和样本熵,提出了一种新的滚动轴承故障特征提取方法。首先对轴承振动信 号进行小波包分解;然后对归一化能量最大的子带进行重构,计算重构信号的样本熵;最后通过样本熵评价故障状态。滚动轴承故障诊断实例验证了该方法的有效性。

    Abstract:

    Fault diagnosis of rolling element bearing is important to improve the performance and the reliability of mechanical systems. The extraction offeature paramet ers is essential to diagnose faults. The sample entropy was introduced into the field of fault diagnosis. Its performance and the choice of calculation paramete rs w ere discussed. Combined with wavelet packet decomposition and sample entropy, a feature extraction method for rolling element bearing faults was proposed. First ly, the bearing vibration signal was processed with wavelet packet decomposition . Then, the sub-band with largest normalized energy was reconstructed. Finally, the sample entropy of the reconstructed signal was calculated and used to evalua te the fault condition. The practical application proves that the method is effe ctive on fault diagnosis of rolling element bearing.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司