摘要:对转子故障信号的信息熵带作为支持向量机(support vector machine,简称SVM)的训练样本,基于粒子群算法(particle swarm optimization,简称PSO)优化SVM分类器结构参数进行了研究。对试验模拟获得的故障信号进行了时域、频域、时频域的信息熵带计算,得到了奇异值谱熵、功率谱熵、小波空间谱熵及小波能谱熵4种熵带,并对熵带进行预处理,建立了一种基于故障信号的信息熵带作为特征量,用PSO解决SVM结构参数优化设置的转子故障识别方法。将该方法应用于转子系统在线故障诊断中,结果表明,所设计的算法具有训练速度快、测试时间短、分类准确率高等特点。