改进投票策略的Morlet小波核支持向量机及应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    主要研究了现有支持向量机存在的问题,提出基于贝叶斯优化投票策略和Morlet小波作为核函数的改进方法。通过贝叶斯优化改进支持向量机分类投票策略,实现对不可分区域数据的有效分类。通过建立Morlet小波核支持向量机,使向量机更加适合冲击非线性信号的分类,并用一个滚动轴承的实例说明方法的鲁棒性和可靠性。

    Abstract:

    Aiming at the existing problems of support vector machine (SVM), a new method based on Bayesian optimization and the establishment of the Morlet wavelet kernel SVM is proposed. The Bayesian optimization is used to improve the voting strategy of SVM. The Morlet wavelet kernel SVM is established to make it more appropriate for the classification of impact and nonlinear signals. An example of a rolling bearing proves that the proposed method is robustness and reliable.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司