一种改进的ARMA模型参数估计方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对自回归滑动平均(autoregressive moving average,简称ARMA)模型参数谱估计容易出现谱峰漂移问题,提出一种基于组合目标函数和遗传算法的ARMA模型参数估计方法。通过最小均方误差准则获得ARMA模型参数初始估计,依据现代谱估计理论和连续函数极值存在的必要条件推导模型参数的频域约束方程,构造组合目标函数并采用遗传算法对模型参数初始估计值进行优化获得模型参数的最优解。将该方法用于车削状态下尾顶尖垂直方向振动加速度时间序列建模和谱估计,结果表明了方法的有效性。

    Abstract:

    To solve the problem of spectral peak deviation for auto-regressive moving average (ARMA) model parametric spectrum estimation, an ARMA parameter estimation method combined by objective function and gene algorithm (GA) is proposed. An initial estimate of the model parameters is acquired by minimizing Least Square Error. The constraint equation is derived according to modern spectrum theory and the necessary condition for the extreme value of continuous function. The combined objective function is constructed and the GA is used to optimize the initial parameter estimation. The method is used for modeling the vertical vibration acceleration data of back centre under turning condition and its spectrum estimation. Results demonstrate its efficiency.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司