基于软阈值和小波模极大值重构的信号降噪
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    软阈值小波降噪是一种常用的非平稳信号特征提取方法,为了改进软阈值小波降噪法的性能,提出一种基于软阈值和二进小波变换模极大值的新小波降噪方法。首先,对信号进行二进小波变换,再对小波系数进行软阈值处理;然后,选择由信号产生的小波系数模极大 值点;最后,用交替投影算法重建信号。理论分析表明,该方法能有效地降低软阈值小波降 噪法 的误差下界。仿真试验表明,该方法提高了降噪结果的信噪比,且较好地保留了信号中的奇异性。将该方法和二进小波变换软阈值降噪法结合起来,应用于滚动轴承故障振动信号降噪。结果表明,

    Abstract:

    Wavelet denoising based on soft thresholding is a commonly used approach for feature extraction of nonstationary signals. A new wavelet denoising meth od based on soft thresholding and the dyadic wavelet transform modulus maxima is proposed in order to improve the performance of the wavelet denoising method based on soft thresholding. Firstly, the proposed method performs the dyadic wavelet transform on the signal, and the wavelet coefficients are processed by soft thresholding.Then,the modulus maxima of wavelet coefficients are selected Finally, the denoised signal is reconstructed by the alternating projection algorithm . Theoretical analysis shows that the proposed method can effectively reduce the lower bound of denoising error of the wavelet denoising method based on soft thresholding. Experiments prove that the new method improve signal-to-noise ratios of the denoised results and well reserve the singularities of the orig inal signal. Both the proposed method and the soft thresholding denoising method based on the dyadic wavelet transform are used to denoise the vibration signal of a roller bearing. Results show that the proposed method more effectively extracts the impulse feature of the signal.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2011-11-09
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司