运用小波包峭度包络的滚动轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据滚动轴承振动信号的性质,提出了一种基于小波包系数、峭度最大值原则及包络谱分析的滚动轴承故障自动诊断方法。首先,用小波包将信号分解到不同的频段上,再对不同频段的小波包系数计算其峭度值;然后,根据峭度值最大原则,自动确定由轴承缺陷所引起的共振频率所在的频带;最后,对该频带的小波包系数进行包络谱分析,以确定故障频率。此方法能够提高滚动轴承故障诊断的可靠性和便捷性。

    Abstract:

    A method for rolling bearing fault auto-diagnosis based on wavelet packet coefficient, kurtosis and envelope analysis is presented according to rolling bearing vibration feature. First, the fault signal will be decomposed into different frequency bands by using wavelet packet. Then, the kurtosis of different frequency band is calculated. In order to avoid envelop spectrum analyses for all wavelet packet coefficient at different frequency band, a criteria in terms of the maximum of kurtosis factor (CMK) is used for selecting the frequency band for analysis. The one containing abundant fault information is chosen automatically by CMK. In the end, the fault frequency can be determined by the envelop spectrum of the chosen group of wavelet packet coefficient. This method can improve reliability and is convenient for rolling bearing fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-01-18
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司