基于连续小波和多类球支持向量机的颤振预报
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了一种应用连续小波特征和多类球支持向量机进行铣削系统颤振预报的方法,该方法基于连续小波变换提取铣削振动信号的特征,利用多类球支持向量机对正常铣削状态、颤振孕育状态和颤振爆发状态的振动信号进行三分类识别,通过识别颤振孕育状态预测颤振爆发.试验结果表明,在铣削颤振识别与预测中,铣削振动信号的连续小波特征与多类球支持向量机相结合具有良好的识别颤振孕育状态和颤振爆发状态的能力,颤振孕育状态的识别正确率达950%,颤振爆发状态的识别正确率达97.5%。

    Abstract:

    A method of chatter forecast is studied by the application of continuous wavelet feature vector and support vector machine (SVM) for ball milling system. This method is based on continuous wavelet transformation to extract feature vector of milling vibration signal and multi-class spherical support vector machine is used to classify three classification and recognition such as normal milling state, chatter gestation state and chatter outbreak of state, which predicts the chatter outbreak by making a recognition of chatter gestation state. As experimental results show, there is a good ability to identify and forecast chatter in recognition and predict of milling vibration, which uses continuous wavelet feature vector and multiclass spherical SVM classifier to deal with milling vibration signal, recognition rate of chatter gestation state reaches 95.0%, then chatter outbreak state recognition rate is 97.5%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-05-16
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司