免疫优化盲源分离算法在故障诊断中的应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将人工免疫算法用于盲源分离算法,阐述了盲源分离过程,提出了免疫优化盲源分离算法(AIS-ICA算法),针对4组特定信号的混合与分离进行了仿真试验。仿真试验结果表明,该算法具有收敛速度快、分离精度高和稳定性好等优点。将该算法用于齿轮箱振动信号的盲源分离及其故障诊断,增强了振动信号所携带的故障信息,结果表明该算法用于齿轮箱振动信号分离可增强故障信息,降低齿轮箱故障诊断难度。

    Abstract:

    An artificial immune algorithm is applied to blind source separation. By elaborated on blind source separation procedure, the blind source separation based on immune optimization algorithm is put forward, called the AIS-ICA algorithm. Simulation experiments of mixing and separation for four specific signals are carried out. The experimental results show that the convergence speed and the separation precision are high, and it has good stability. The new algorithm is applied to gearbox vibration signals for blind source separation and fault diagnosis, fault information by vibration signals is enhanced. Results show that the algorithm used to separate vibration signals of gearbox can enhance fault information and reduce difficulty of gearbox fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-05-16
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司