基于EMD-HMM的BIT间歇故障识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对引起机内测试系统(BIT)虚警的间歇故障,提出了一种基于经验模态分解(EMD)和隐马尔科夫模型(HMM)的间歇故障诊断方法以抑制虚警。首先对原始信号进行EMD分解,选择能量最大的几个固有模式分量函数(IMF)进行特征提取,作为系统状态的观测值;然后将观测值输入到训练好的HMM中进行决策,求取最大似然概率值作为识别结果。结果表明,利用EMD进行特征提取并与HMM方法相结合能很好地分类出各种状态,有效地诊断出间歇故障。

    Abstract:

    An intermittent fault diagnosis approach based on EMD-HMM to restrain false alarm for Builtin test (BIT) is proposed. Firstly, EMD is employed to decompose the original signal, the several energy dominating intrinsic mode functions (IMFs) are chosen and the energy feature parameters of each IMFs are extracted to form observed vectors of system. Then, the feature vectors are input into the trained HMM for malfunction recognition, the maximum log-likelihood probability is in the fault state. The results show that combining this feature vectors extracted method by EMD with HMM can diagnose intermittent fault effectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-07-19
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司