改进的协同粒子群优化算法的研究与应用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为增强现有PSO算法和协同粒子群优化算法的优化性能,提出了一种改进的协同粒子群优化算法及一种新的协同策略。该算法在进化过程中,将寻优粒子群分解为若干子分群,各子分群粒子利用本分群经验和整个种群经验进行搜索,既能在分群内部不断搜索,不迷失寻优方向,又能周期性地共享整群最优值引导粒子找到最好解。分解为多个子种群有利于维持种群的多样性,有效抑制局部最优现象发生。对经典复杂函数的寻优测试表明,改进算法的鲁棒性、收敛速度、精度及全局搜索能力均优于基本PSO算法。最后将改进算法用于建立基于神经网络的旋转机械故障诊断模型,设计了相应的故障诊断系统。结果表明,基于此算法的故障诊断系统具有诊断精度较高、稳定性能较好等特点。

    Abstract:

    In order to enhance the optimization performance of PSO and cooperative PSO algorithms, an improved cooperative PSO algorithm (ICPSO) is proposed and a novel cooperative strategy is provided. During evolving process, the particles are divided into several sub swarms, each sub-swarm can make use of the experience of its own sub swarm and the whole particle swarm effectively. Each sub-swarm can search in its own domain adequately, which can avoid missing optimization direction. At the same time it can take advantage of the best solution found by the whole swarm periodically. The diversity of particles can be maintained by dividing the particles into several sub-swarms, thus can restrain local optimum phenomena. Experiments study on several classical and complex functions show that the improved algorithm outperforms basis PSO in robustness, converging speed and precision, global searching ability. Finally, ICPSO is applied to construct neural network fault diagnosis model for rotary machinery, then fault diagnosis system is designed. Research results show that the diagnosis system has the properties of high diagnosis accuracy and favorable stability

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-07-19
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司