基于小波包变换与样本熵的滚动轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承振动信号的不规则性和复杂性可以反映轴承故障的发生和发展,提出一种基于小波包变换与样本熵的轴承故障诊断方法。样本熵可以较少地依赖时间序列的长度,将轴承振动信号进行3层小波包分解,利用分解得到的各个频带的样本熵值作为特征向量,利用支持向量机对轴承故障进行分类。对轴承内圈故障、滚动体故障和外圈故障3种故障及不同损伤程度的实测数据进行实验,结果表明该方法取得较高的识别率,具有一定的工程应用价值。

    Abstract:

    According to the irregularity and complexity of roller bearing fault, and vibration signals can reflect the occurrence and development of the fault, a roller bearing fault diagnosis method based on wavelet packet transform (WPT) and Sample Entropy (SampEn) is proposed. SampEn is a measure that quantifies the complexity of a signal and has the advantage of being less dependent on time series length. The original bearing vibration signal is decomposed by wavelet packet transform. The sample entropy of the resultant wavelet packet coefficients are served as feature vector. In the classification, the support vector machine method is used to identify the different faults. Experiments are conducted on roller bearing with three different fault categories and several levels of fault severity. The experimental results indicate that the proposed approach could reliably identify the different fault categories. Thus, the proposed approach has possibility for bearing fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-09-11
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司