利用小波包和SVDD的分拣机轴承故障诊断
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对邮政分拣机供包台轴承故障识别精度较低问题,展开一种基于小波包结合支持向量数据描述的振动故障辨识研究。运用小波变换对检测的振动信号进行降噪, 再利用统计分析、共振解调和小波包技术从预处理后的信号中提取故障特征频率和小波包 能量等时、频域特征作为输入向量。通过核参数优化选取和正常类样本集训练学习,建立描 述 轴承正常工作状态的最小特征超球体作为预测模型并带入轴承试验台中。试验结果表明,该方法的正确识别率可以达到98%以上。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-10-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司