基于经验模态分解与RBF神经网络的混合预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高时间序列预测模型精度,根据各本征模态函数(intrinsic mode function,简称IMF)序 列的变化特点,针对EMD RBF神经网络隐含神经元数目及其中心数据选取问题,利用经验模态分解(empirical mode decomposition,简称EM D)的信号自适应处理能力和径向基函数(radical basis function,简称RBF)神经网络的 非线性逼近能力,提出了一种基于EMD与RBF神经网络的混合预测方法。该方法将具有类似时频特性的本征模态函数分别建立RBF神经网络预测模型,采用基于统计分析的k均值聚类方法自适应确定RBF模型参数,最后将各IMF-RBF神经网络预测结果进行重构得到最终预测结果。仿真结果表明,该方法充分考虑到各IMF本身的特性,增强了时序的可预测性,预测性能比传统反向传播(back propagation,简称BP)神经网络和小波BP神经网络更优越。将该方法应用在某装备温控系统性能监测中,其温度参数最大预测误差远小于传感器误差,说明将该方法在该装备故障预测中是可行的。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2012-10-29
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司