摘要:为了抑制经验模态分解(empirical mode decomposition,简称EMD)中出现的端点效应和模态混叠现象,在信号组综合经验模态分解(ensemble empirical mode decomposition,简称EEMD)的基础上,从抑制信号干扰和噪声污染 影响以及三次样条函数插值拟合误差逐级传播方面,提出利用信号支持向量机(support vector ma chines,简称SVM)延拓改进EEMD。通过对仿真和实测信号研究,比较了EMD和EEMD的分解,提出改进的EEMD方法不仅减少了虚假模态分量、避免了模态混叠,而且有效抑制了端点效应。与基于镜像延拓改进的EEMD方法比较表明,本研究方法的时频谱更加清晰,虚假模态分量更少,有效解决了端点效应引起的分解失真问题。