运用在线贯序极限学习机的故障诊断方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的前馈神经网络学习算法泛化能力不高、训练速度慢、易出现局部最优解及无法处理随时间不断变化的信息流等问题,提出了基于在线贯序极限学习机的快速故障诊断方法。针对旋转机械故障复杂、样本少的特点,将测试过程中得到的预测数据加入训练样本,作为下一次预测的已知信息,建立在线贯序极限学习机分类模型,从而在最大程度上提高故障诊断的精度。试验结果表明,在线贯序极限学习机在故障分类准确率与支持向量机相近的条件下, 参数选择简单且学习速度提高近200倍。

    Abstract:

    The traditional feedforward neural networks has a slow training speed and a low generalization performance, which may produce the local minimum and can not handle the change flow of information. Unlike these conventional implement ations, a fast fault diagnosis method is proposed based on online sequential extreme learning machine. As complexity and lack of fault samples of rotating machinery,the testing data obtained in the forecast process are added to the training samples, which is known as information during the next forecast process to establish the online sequential extreme learning machine classifier model, and it enhances the precision of fault diagnosis at the largest extent. The experimental results show that, it is easier to select the parameters and the learning rate increased 200 times when online sequential extreme learning machine has similar classification accuracy compared with support vector machine(SVM).

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-05-12
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司