基于智能报警的刀具状态在线监测技术
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高机床加工过程中刀具磨损的监测能力,选择主轴电流和进给电流为主要信息,基于小波分解及软测量模型进行电流信号的多特征提取,从加工进给和主轴驱动两方面反映刀具磨破损信息;在此基础上,基于Parzen视窗法进行多特征信息的数据融合,构建智能报警模型,并依据拉依达法则确定报警边界,从而实现刀具状态的智能报警。将该技术应用到机床的加工中,实验证明可以实时地监测刀具运行状态并进行磨破损报警。

    Abstract:

    In order to improve the ability of tool wear monitoring in the machining process, the spindle current and feed current are selected as the main information. The-multi feature extraction of current signal is based on the wavelet decomposition and soft-sensing model. The information of tool wear and break can be reflected from the processing of feed and spindle driving. On the basis of above all, the data fusion of the multi-feature information and the construction of intelligent alarm model can be implemented based on Parzen windows. The alarm boundary is determined based on Pa Ta criterion, so the intelligent alarm of tool condition can be achieved. When applying this technology to tool machining, it is shown from the experiment results that this technology can monitor tool condition in real-time and alarm in time.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-09-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司