压电柔性梁裂缝损伤识别实验
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对压电柔性悬臂梁裂缝损伤检测与损伤程度识别问题,采用小波包分析和小波神经网络相结合的方法进行裂缝深度识别实验研究。利用小波包频带能量谱构造柔性悬臂梁裂缝损伤指标,即能量比相对变化量的H2范数,并建立压电柔性梁裂缝损伤实验装置。激励柔性梁的振动,记录两路压电传感器采集的振动信号,进行小波包分解并计算损伤指标。将这些损伤指标进行组合,作为小波神经网络的输入特征参数,进行裂缝深度即损伤程度的识别。实验结果表明:能量比相对变化量的H2范数对柔性梁的裂缝损伤敏感,对测试噪声不敏感;采用的小波神经网络可以精确识别柔性梁的裂缝深度。

    Abstract:

    In order to detect and recognize the extent of crack damage for piezoelectric flexible cantilever beam, experiments are conducted using the method of combining wavelet packet analysis with wavelet neural network (WNN). The damage index of H2 norm of energy ratio relative variation is given based on wavelet packet energy spectrum. An experimental setup for cracked piezoelectric flexible beam is built up. After excitation, the vibration signals are measured by using two piezoelectric patches and decomposed by using wavelet packet to calculate damage indexes. The damage indexes are combined as input characteristic parameters of WNN to identify the depth of crack in the beam. The experimental results demonstrate that the H2 norm of energy ratio relative variation is sensitive to crack damage of beam, and it is not sensitive to noise. The crack depth of the flexible beam can be recognized by using WNN accurately.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-09-01
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2025 版权所有
技术支持:北京勤云科技发展有限公司