基于支持向量回归方法的齿轮箱故障诊断研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于支持向量回归的齿轮箱故障诊断方法。通过提取能反映齿轮箱工作状态的特征参数,并将分类问题转化为回归问题,针对性地构造了多分类支持向量回归决策机构并将其用于齿轮箱故障诊断,避免了投票决策机构等票数无法分类问题。相比于人工神经网络,该方法具有收敛速度快、泛化能力强的优点。

    Abstract:

    Gearbox is one of the most important components widely used in rotary machines and its health status is the key factor for the stable operation of the machinery. Hence, the condition monitoring and fault diagnosis of gearbox is of great significance. A new gearbox fault diagnosis method based on support vector regression is proposed. Firstly, the features that can reflect the health status of the gearbox are extracted, and then the problem of classification is transferred to regression problem. Finally, a new support vector regression decision mechanism is constructed and applied to the diagnosis of gearbox. It effectively avoids the problem of equal votes in voting decision organization. Comparing to Artifical Neural Network (ANN), the proposed method converges fast and has better generalization ability.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-06-08
  • 出版日期:
您是第位访问者
振动、测试与诊断 ® 2024 版权所有
技术支持:北京勤云科技发展有限公司